首页> 外文OA文献 >Assimilating NOAA SST data into the BSH operational circulation model for the North and Baltic Seas: Inference about the data
【2h】

Assimilating NOAA SST data into the BSH operational circulation model for the North and Baltic Seas: Inference about the data

机译:将NOaa ssT数据同化到北海和波罗的海的BsH运行循环模型中:对数据的推断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The operational ocean prediction model for the North and Baltic Seas of the German Maritime and Hydrographic Agency (BSH)is augmented with a multivariate data assimilation (DA) system. We report on the implementation and performance of the scheme which is based on ensemble forecasting.Here we apply the localised Singular Evolutive Interpolated Kalman (SEIK)filter for assimilating the NOAA AVHRR-derived sea surface temperature (SST)data.ududResults are presented for two periods: October 2007 is used for calibration and March 2011 for the analysis of the performance in a pre-operational phase. The major forecast improvement is found to be a reduction in the local temperature bias.As compared with the regular BSH forecast without assimilation, the root mean square difference between the predicted SST and satellite observations is reduced on average from 0.87 degC to 0.53 degC for March 2011. The quality of the predicted fields that were not assimilated (velocities, sea level and salinity) is preserved as is confirmed by independent data. The results have required adjustment of the conditional data error statistics.ududThe experiments conducted with different timing and frequency of data assimilation and variable forecasting periods show that the DA system corrects systematic model uncertainties and , due to memory to the corrections, improves prediction over periods of up to 5 days. The results also explicitly illustrate a lower quality of the AVHRR daytime product and reveal low informative influence of the data on the forecasting system when daytime SSYs are assimilated additionally to midnight observations.
机译:德国海事水文局(BSH)对北海和波罗的海的业务海洋预测模型增加了多变量数据同化(DA)系统。我们报告了基于整体预报的该方案的实施和性能。在此,我们应用局部奇异演化插值卡尔曼(SEIK)过滤器来吸收NOAA AVHRR得出的海面温度(SST)数据。报告分为两个阶段:2007年10月用于校准,2011年3月用于分析预运行阶段的性能。发现主要的预报改进是减少了当地的温度偏差。与没有同化的常规BSH预报相比,SST预报与卫星观测值之间的均方根差异从3月的0.87摄氏度平均降低到0.53摄氏度2011年。未经独立数据确认,未保留的预测区域(速度,海平面和盐度)的质量得以保留。结果需要调整条件数据错误统计信息。 ud ud在数据同化的时间和频率以及可变的预测周期上进行的实验表明,DA系统纠正了系统模型的不确定性,并且由于存储了纠正信息,从而改善了预测最多5天。结果还清楚地说明了AVHRR白天产品的质量较低,并且当将午间SSY与午夜观测值同化时,数据对预报系统的信息影响较小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号