首页> 外文OA文献 >Hot carbon corona in Mars’ upper thermosphere and exosphere: 1. Mechanisms and structure of the hot corona for low solar activity at equinox
【2h】

Hot carbon corona in Mars’ upper thermosphere and exosphere: 1. Mechanisms and structure of the hot corona for low solar activity at equinox

机译:火星上部热层和外层的热碳冠:1。日冕低太阳活动的热冠的机制和结构

摘要

Two important source reactions for hot atomic carbon on Mars are photodissociation of CO and dissociative recombination of CO + ; both reactions are highly sensitive to solar activity and occur mostly deep in the dayside thermosphere. The production of energetic particles results in the formation of hot coronae that are made up of neutral atoms including hot carbon. Some of these atoms are on ballistic trajectories and return to the thermosphere, and others escape. Understanding the physics in this region requires modeling that captures the complicated dynamics of hot atoms in 3‐D. This study evaluates the carbon atom inventory by investigating the production and distribution of energetic carbon atoms using the full 3‐D atmospheric input. The methodology and details of the hot atomic carbon model calculation are given, and the calculated total global escape of hot carbon from the assumed dominant photochemical processes at a fixed condition, equinox ( L s  = 180°), and low solar activity ( F 10.7 = 70 at Earth) are presented. To investigate the dynamics of these energetic neutral atoms, we have coupled a self‐consistent 3‐D global kinetic model, the Adaptive Mesh Particle Simulator, with a 3‐D thermosphere/ionosphere model, the Mars Thermosphere General Circulation Model to provide a self‐consistent global description of the hot carbon corona in the upper thermosphere and exosphere. The spatial distributions of density and temperature and atmospheric loss are simulated for the case considered. Key Points Hot C corona is simulated at the fixed condition within our frameworks Background atmosphere greatly impacts the structure of hot C corona The estimated global escape rates of hot C is 5.9 x 1023 s‐1
机译:火星上热原子碳的两个重要的源反应是CO的光解离和CO +的离解重组;这两个反应都对太阳活动高度敏感,并且大多发生在白天的热层深处。高能粒子的产生导致形成热电晕,该电晕由包括热碳在内的中性原子组成。这些原子中的一些处于弹道上并返回热层,其他原子则逃脱。要了解该区域的物理原理,需要进行建模以捕获3D中热原子的复杂动力学。这项研究通过调查使用完整3D大气输入的高能碳原子的产生和分布来评估碳原子清单。给出了热原子碳模型计算的方法和细节,并计算了在固定条件,春分点(L s = 180°)和低太阳活动(F 10.7)下假定的主要光化学过程所产生的热碳总总逸出量。 =地球上的70英镑)。为了研究这些高能中性原子的动力学,我们将自洽的3D全局动力学模型(自适应网格粒子模拟器)与3D热球/电离层模型,火星热球总循环模型耦合在一起,以提供一个自对上热圈和系外圈热碳电晕的全局描述一致。针对所考虑的情况,模拟了密度,温度和大气损耗的空间分布。要点我们在框架内的固定条件下模拟了热C电晕背景气氛极大地影响了热C电晕的结构估计的热C全球逸出率是5.9 x 1023 s-1

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号