首页> 外文OA文献 >Obtaining Potential Field Solutions with Spherical Harmonics and Finite Differences
【2h】

Obtaining Potential Field Solutions with Spherical Harmonics and Finite Differences

机译:利用球谐函数和有限差分获得势场解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Potential magnetic field solutions can be obtained based on the synoptic magnetograms of the Sun. Traditionally, a spherical harmonics decomposition of the magnetogram is used to construct the current- and divergence-free magnetic field solution. This method works reasonably well when the order of spherical harmonics is limited to be small relative to the resolution of the magnetogram, although some artifacts, such as ringing, can arise around sharp features. When the number of spherical harmonics is increased, however, using the raw magnetogram data given on a grid that is uniform in the sine of the latitude coordinate can result in inaccurate and unreliable results, especially in the polar regions close to the Sun. We discuss here two approaches that can mitigate or completely avoid these problems: (1) remeshing the magnetogram onto a grid with uniform resolution in latitude and limiting the highest order of the spherical harmonics to the anti-alias limit; (2) using an iterative finite difference algorithm to solve for the potential field. The naive and the improved numerical solutions are compared for actual magnetograms and the differences are found to be rather dramatic. We made our new Finite Difference Iterative Potential-field Solver (FDIPS) a publicly available code so that other researchers can also use it as an alternative to the spherical harmonics approach.
机译:可以根据太阳的天气磁图获得潜在的磁场解。传统上,磁图的球谐分解用于构造无电流和无散度的磁场解。当球形谐波的阶次相对于磁图的分辨率被限制为较小时,尽管某些现象(例如振铃)可能会在尖锐的特征周围出现,但此方法相当有效。但是,当增加球谐函数的数量时,使用在纬度坐标的正弦上均匀的网格上给出的原始磁图数据可能会导致结果不准确且不可靠,尤其是在靠近太阳的极地地区。我们在这里讨论两种可以缓解或完全避免这些问题的方法:(1)将磁图重新整理到具有均匀纬度分辨率的网格上,并将球形谐波的最高阶限制在抗锯齿极限上; (2)使用迭代有限差分算法求解势场。比较了天真的和改进的数值解与实际磁图的比较,发现差异非常明显。我们将新的有限差分迭代势场求解器(FDIPS)公开发布,以便其他研究人员也可以将其用作球谐方法的替代方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号