首页> 外文OA文献 >Model refactoring using examples: a search‐based approach
【2h】

Model refactoring using examples: a search‐based approach

机译:使用示例进行模型重构:基于搜索的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the important challenges in model‐driven engineering is how to improve the quality of the models' design in order to help designers understand them. Refactoring represents an efficient technique to improve the quality of a design while preserving its behavior. Most of existing work on model refactoring relies on declarative rules to detect refactoring opportunities and to apply the appropriate refactorings. However, a complete specification of refactoring opportunities requires a huge number of rules. In this paper, we consider the refactoring mechanism as a combinatorial optimization problem where the goal is to find good refactoring suggestions starting from a small set of refactoring examples applied to similar contexts. Our approach, named model refactoring by example, takes as input an initial model to refactor, a set of structural metrics calculated on both initial model and models in the base of examples, and a base of refactoring examples extracted from different software systems and generates as output a sequence of refactorings. A solution is defined as a combination of refactoring operations that should maximize as much as possible the structural similarity based on metrics between the initial model and the models in the base of examples. A heuristic method is used to explore the space of possible refactoring solutions. To this end, we used and adapted a genetic algorithm as a global heuristic search. The validation results on different systems of real‐world models taken from open‐source projects confirm the effectiveness of our approach. Copyright © 2014 John Wiley & Sons, Ltd.
机译:在模型驱动工程中,重要的挑战之一是如何提高模型设计的质量,以帮助设计人员理解它们。重构是一种有效的技术,可以在保留设计行为的同时提高设计质量。现有的有关模型重构的大部分工作都依赖于声明性规则来检测重构机会并应用适当的重构。但是,完整的重构机会说明需要大量规则。在本文中,我们将重构机制视为一个组合优化问题,其目标是从适用于相似上下文的一小套重构示例中找到良好的重构建议。我们的方法(通过示例命名为模型重构)将要重构的初始模型,在初始模型和示例基础上的模型上计算出的一组结构度量作为输入,并从不同的软件系统中提取重构示例的基础作为输入。输出一系列重构。解决方案定义为重构操作的组合,该重构操作应基于初始模型与示例基础中的模型之间的度量,尽可能最大化结构相似性。启发式方法用于探索可能的重构解决方案的空间。为此,我们使用并改编了遗传算法作为全局启发式搜索。来自开源项目的不同模型的真实世界的验证结果证实了我们方法的有效性。版权所有©2014 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号