首页> 外文OA文献 >Gallium Nitride Resonators for Infrared Detector Arrays and Resonant Acoustoelectric Amplifiers.
【2h】

Gallium Nitride Resonators for Infrared Detector Arrays and Resonant Acoustoelectric Amplifiers.

机译:用于红外探测器阵列和谐振声电放大器的氮化镓谐振器。

摘要

This work presents the first comprehensive utilization of Gallium Nitride (GaN) in high-performance, high-frequency micromechanical resonators. It presents characterization of critical electromechanical properties of GaN and validation of high-performance designs. The primary motivation behind this project is the use of GaN resonators as sensitive, low-noise, uncooled infrared (IR) detectors. IR response of micromechanical resonators is based on radiative absorption and a consequent shift in its resonant frequency. Mechanical resonators are expected to perform better than contemporary uncooled IR detectors as the noise equivalent temperature difference (NETD) is primarily limited by each resonator’s thermomechanical noise, which is smaller than resistive bolometers. GaN is an ideal material for resonant IR detection as it combines piezoelectric, pyroelectric, and electrostrictive properties that lead to a high IR sensitivity up to -2000 ppm/K (~ 100× higher than other materials). To further improve IR absorption efficiency, we developed two thin-film absorbers: a carbon nanotube (CNT)-polymer nanocomposite material with broad-spectrum absorption efficiency (> 95%) and a plasmonic absorber with narrow-spectrum absorption (> 45% for a select wavelength) integrated on the resonator. Designs have also been successfully implemented using GaN-on-Si, aluminum nitride (AlN), AlN-on-Si, and lead-zirconate-titanate (PZT), and fabricated both in-house and using commercial foundry processes. Resonant IR detectors, sense-reference pairs, and small-format arrays (16 elements) are successfully implemented with NETD values of 10 mK, and ~1 ms-10 ms response times. This work also presents the first measurements and analysis of an exciting, fairly unexplored phenomenon: the amplification of acoustic standing waves in GaN resonators using electrical energy, boosting the quality factor (Q) and reducing energy losses in the resonator. This phenomenon is based on phonon-electron interactions in piezoelectric semiconductors. Under normal conditions this interaction is a loss mechanism for acoustic energy, but as we discovered and consistently demonstrated, it can be reversed to provide acoustoelectric amplification (resulting in Q-amplification of up to 35%). We present corroborated analytical and experimental results that describe the phonon-electron loss/gain in context with other loss mechanisms in piezoelectric semiconductor resonators. Research into this effect can potentially yield insights into fundamental solid-state physics and lead to a new class of acoustoelectric resonant amplifiers.
机译:这项工作提出了氮化镓(GaN)在高性能,高频微机械谐振器中的首次综合利用。它介绍了GaN关键机电性能的表征和高性能设计的验证。该项目背后的主要动机是将GaN谐振器用作灵敏,低噪声,未冷却的红外(IR)检测器。微机械谐振器的IR响应是基于辐射吸收及其随之而来的谐振频率变化。预计机械谐振器的性能将优于当代的非制冷红外探测器,因为噪声等效温度差(NETD)主要受每个谐振器的热机械噪声限制,该热机械噪声小于电阻测辐射热计。 GaN是压电谐振,热电和电致伸缩特性的理想材料,它是共振IR检测的理想材料,可产生高达-2000 ppm / K(比其他材料高约100倍)的高IR灵敏度。为了进一步提高红外吸收效率,我们开发了两种薄膜吸收剂:具有广谱吸收效率(> 95%)的碳纳米管(CNT)-聚合物纳米复合材料和具有窄谱吸收(> 45%的等离子吸收剂)的薄膜吸收剂。选择波长)集成在谐振器上。还使用硅基氮化镓,氮化铝(AlN),硅基氮化铝和钛酸锆钛酸铅(PZT)成功实施了设计,并在内部和使用商业铸造工艺进行了制造。 NET 10的NETD值为10 mK,响应时间约为1毫秒至10毫秒,成功实现了谐振红外检测器,感应参考对和小型阵列(16个元件)。这项工作还提出了对一个令人兴奋的,尚未完全探索的现象的首次测量和分析:使用电能在GaN谐振器中放大声驻波,提高了品质因数(Q)并减少了谐振器中的能量损耗。这种现象是基于压电半导体中的声子-电子相互作用。在正常情况下,这种相互作用是声能的损失机制,但是正如我们发现并始终证明的那样,可以将其反转以提供声电放大(导致Q放大高达35%)。我们提供了证实性的分析和实验结果,这些结果描述了声子-电子损耗/增益与压电半导体谐振器中的其他损耗机制。对这种效应的研究可以潜在地产生对基本固态物理学的见识,并导致产生一类新的声电谐振放大器。

著录项

  • 作者

    Gokhale Vikrant Jayant;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号