首页> 外文OA文献 >A Mobile Query Service for Integrated Access to Large Numbers of Online Semantic Web Data Sources
【2h】

A Mobile Query Service for Integrated Access to Large Numbers of Online Semantic Web Data Sources

机译:一种用于对大量在线语义Web数据源进行集成访问的移动查询服务

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

From the Semantic Web’s inception, a number of concurrent initiatives have given rise to multiple segments: large semantic datasets, exposed by query endpoints; online Semantic Web documents, in the form of RDF files; and semantically annotated web content (e.g., using RDFa), semantic sources in their own right. In various mobile application scenarios, online semantic data has proven to be useful. While query endpoints are most commonly exploited, they are mainly useful to expose large semantic datasets. Alternatively, mobile RDF stores are utilized to query local semantic data, but this requires the design-time identification and replication of relevant data. Instead, we present a mobile query service that supports on-the-fly and integrated querying of semantic data, originating from a largely unused portion of the Semantic Web, comprising online RDF files and semantics embedded in annotated webpages. To that end, our solution performs dynamic identification, retrieval and caching of query-relevant semantic data. We explore several data identification and caching alternatives, and investigate the utility of source metadata in optimizing these tasks. Further, we introduce a novel cache replacement strategy, fine- tuned to the described query dataset, and include explicit support for the Open World Assumption. An extensive experimental validation evaluates the query service and its alternative components.
机译:从语义Web的诞生开始,许多并发的倡议就引发了多个细分:大型语义数据集,由查询端点公开;以RDF文件形式的在线语义Web文档;以及带有语义注释的Web内容(例如使用RDFa)本身就是语义来源。在各种移动应用方案中,在线语义数据已被证明是有用的。虽然查询端点最常被利用,但它们主要用于公开大型语义数据集。另外,移动RDF存储库可用于查询本地语义数据,但这需要设计时识别和复制相关数据。取而代之的是,我们提出了一种移动查询服务,该服务支持对语义数据进行即时和集成的查询,这些数据源于语义网的大部分未使用部分,包括在线RDF文件和嵌入在带注释的网页中的语义。为此,我们的解决方案执行了与查询相关的语义数据的动态识别,检索和缓存。我们探索了几种数据识别和缓存替代方案,并研究了源元数据在优化这些任务中的效用。此外,我们引入了一种新颖的缓存替换策略,该策略已微调至所描述的查询数据集,并包括对开放世界假设的明确支持。广泛的实验验证可评估查询服务及其替代组件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号