首页> 外文OA文献 >Balancing task- and data-level parallelism to improve performance and energy consumption of matrix computations on the Intel Xeon Phi
【2h】

Balancing task- and data-level parallelism to improve performance and energy consumption of matrix computations on the Intel Xeon Phi

机译:平衡任务和数据级并行性,以提高英特尔至强融核的矩阵计算的性能和能耗

摘要

The emergence of new manycore architectures, such as the Intel Xeon Phi, poses new challenges in how to adapt existing libraries and applications to this type of systems. In particular, the exploitation of manycore accelerators requires a holistic solution that simultaneously addresses time-to-response, energy efficiency and ease of programming. In this paper, we adapt the SuperMatrix runtime task scheduler for dense linear algebra algorithms to the many-threaded Intel Xeon Phi, with special emphasis on the performance and energy profile of the solution. From the performance perspective, we optimize the balance between task- and data-parallelism, reporting notable results compared with Intel MKL. From the energy-aware point of view, we propose a methodology that relies on core-level event counters and aggregated power consumption samples to obtain a task-level accounting for the energy. In addition, we introduce a blocking mechanism to reduce power and energy consumption during the idle periods inherent to task parallel executions.
机译:诸如Intel Xeon Phi之类的新型多核架构的出现,给如何使现有库和应用程序适应此类系统提出了新的挑战。特别是,对许多核心加速器的利用需要一个整体解决方案,该解决方案同时解决响应时间,能源效率和易于编程的问题。在本文中,我们将适用于密集线性代数算法的SuperMatrix运行时任务计划程序调整为多线程Intel Xeon Phi,并特别强调了该解决方案的性能和能耗。从性能的角度来看,我们优化了任务并行和数据并行之间的平衡,与英特尔MKL相比,报告了显着的结果。从能源意识的角度出发,我们提出了一种方法,该方法依赖于核心级事件计数器和汇总的功耗样本来获得任务级的能源核算。此外,我们引入了一种阻塞机制来减少任务并行执行所固有的空闲期间的功耗和能耗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号