首页> 外文OA文献 >Ti-Nb-(Zr,Ta) superelastic alloys for medical implants : thermomechanical processing, structure, phase transformations and functional properties
【2h】

Ti-Nb-(Zr,Ta) superelastic alloys for medical implants : thermomechanical processing, structure, phase transformations and functional properties

机译:用于医疗植入物的Ti-Nb-(Zr,Ta)超弹性合金:热机械加工,结构,相变和功能特性

摘要

The aim of this project is to develop a new class of orthopaedic implant materials that combine the excellent biocompatibility of pure titanium with the outstanding biomechanical compatibility of Ti-Ni-based shape memory alloys. The most suitable candidates for such a role are Ti-Nb-Zr and Ti-Nb-Ta near-beta shape memory alloys. Since this class of materials was developed quite recently, the influence of thermomechanical treatment on their structure and functional properties has not as yet been the subject of any comprehensive study. Consequently, this project is focused on the interrelations between the composition, the microstructure and the functional properties of superelastic Ti-Nb-Zr and Ti-Nb-Ta alloys for biomedical application. The principal objective is to improve the functional properties of these alloys, more specifically their superelastic properties and fatigue resistance, through optimization of the alloys’ composition and thermomechanical processing.ududIt is shown in this thesis that the structure and functional properties of Ti-Nb-based shape memory alloys can be effectively controlled by thermomechanical processing including cold deformation with post-deformation annealing and ageing. It is also shown that the formation of nanosubgrain substructure leads to a significant improvement of superelasticity and fatigue resistance in these alloys. The influence of ageing on the ω-phase precipitation kinetics and, consequently, on the functional properties of Ti-Nb-Zr and Ti-Nb-Ta alloys is also observed.ududBased on the results obtained, optimized regimes of thermomechanical treatment resulting in a best combination of functional properties are recommended for each alloy, from the orthopaedic implant materials standpoint.ududAn original tensile stage for a low-temperature chamber of an X-ray diffractometer is developed and used in this project. A unique low-temperature (-150...+100oC) comparative in situ X-ray study of the transformations’ features and crystal lattice evolution is performed under strain-controlled conditions. The lattice parameters of β- and α”-phases calculated across the whole testing temperature range allow us to conclude that the higher the temperature, the lower the α”→β transformation strain. It is found also that loading at low temperatures results in α”-phase formation and reorientation, while application of the load during heating changes the transformation sequences. The observed reversible β-phase X-ray line widening and narrowing during temperature scanning are the direct result of appearance and disappearance of microstresses caused by reversible thermoelastic martensitic transformation.
机译:该项目的目的是开发一种新型的骨科植入物材料,它将纯钛的出色生物相容性与Ti-Ni基形状记忆合金的出色生物力学相容性相结合。具有这种作用的最合适的候选材料是Ti-Nb-Zr和Ti-Nb-Ta近β形状记忆合金。由于这类材料是最近才发展起来的,因此热机械处理对其结构和功能特性的影响尚未成为任何全面研究的主题。因此,该项目的重点是用于生物医学的超弹性Ti-Nb-Zr和Ti-Nb-Ta合金的成分,微观结构和功能特性之间的相互关系。主要目标是通过优化合金的成分和热机械加工来改善这些合金的功能特性,尤其是提高其超弹性和耐疲劳性。 ud ud本论文表明,Ti的结构和功能特性-Nb基形状记忆合金可通过热机械加工(包括具有变形后退火和时效的冷变形)进行有效控制。还显示出纳米亚晶粒亚结构的形成导致这些合金中超弹性和抗疲劳性的显着改善。还观察到时效对ω相析出动力学的影响,进而对Ti-Nb-Zr和Ti-Nb-Ta合金的功能性能的影响。 ud ud基于获得的结果,优化了热机械处理方案从整形外科植入材料的角度出发,建议为每种合金提供最佳的功能特性组合。 ud ud为该项目开发并使用了X射线衍射仪低温室的原始拉伸台。在应变控制的条件下,进行了独特的低温(-150 ... + 100oC)比较原位X射线研究转变的特征和晶格演化的研究。在整个测试温度范围内计算出的β-相和α”-相的晶格参数使我们得出结论,温度越高,α”→β的转变应变越低。还发现在低温下的负载导致α”相的形成和重新取向,而在加热期间负载的施加改变了转变顺序。在温度扫描过程中观察到的可逆β相X射线线变宽和变窄是可逆热弹性马氏体相变引起的微应力出现和消失的直接结果。

著录项

  • 作者

    Dubinskiy Sergey;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号