首页> 外文OA文献 >Circular Hough Transform and Local Circularity Measure for Weight Estimation of a Graph-Cut based Wood Stack Measurement
【2h】

Circular Hough Transform and Local Circularity Measure for Weight Estimation of a Graph-Cut based Wood Stack Measurement

机译:基于图切割的木栈测量权重估计的圆Hough变换和局部圆度测度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the time consuming tasks in the timber industryis the manually measurement of features of wood stacks.Such features include, but are not limited to, the numberof the logs in a stack, their diameters distribution, and theirvolumes. Computer vision techniques have recently beenused for solving this real-world industrial application. Suchtechniques are facing many challenges as the task is usuallyperformed in outdoor, uncontrolled, environments. Furthermore,the logs can vary in texture and they can be occludedby different obstacles. These all make the segmentation ofthe wood logs a difficult task. Graph-cut has shown to begood enough for such a segmentation. However, it is hardto find proper graph weights. This is exactly the contributionof this paper to propose a method for setting theweights of the graph. To do so, we use Circular HoughTransform (CHT) for obtaining information about the foreandbackground regions of a stack image, and then use thistogether with a Local Circularity Measure (LCM) to modifythe weights of the graph to segment the wood logs from therest of the image. We further improve the segmentation byseparating overlapping logs. These segmented wood logsare finally scaled and used to acquire the necessary woodstack measurements in real-world scale (in cm). The proposedsystem, which works automatically, has been testedon two different datasets, containing real outdoor imagesof logs which vary in shapes and sizes. The experimentalresults show that the proposed approach not only achievesthe same results as the state-of-the-art systems, it producesmore stable results.
机译:木材工业中一项耗时的任务是手动测量木stack的特征,这些特征包括但不限于木stack的数量,直径的分布及其体积。计算机视觉技术最近已用于解决该现实世界的工业应用。由于这项任务通常是在不受控制的户外环境中执行的,因此此类技术面临着许多挑战。此外,原木的质地可能会有所不同,并且可能会被不同的障碍物遮挡。这些都使木材原木的分割变得困难。图割已显示出足够好的分割效果。但是,很难找到合适的图形权重。这正是本文为提出一种设置图权重的方法所做的贡献。为此,我们使用圆形霍夫变换(CHT)来获取有关堆栈图像的前,后区域的信息,然后将其与局部圆度测量(LCM)一起使用以修改图形的权重,以将木材原木与其余部分分开图片。我们通过分离重叠的日志进一步改善了细分。最终将这些分段的原木进行缩放,并用于以实际比例(以厘米为单位)获取必要的木叠测量值。该提议的系统可自动工作,已在两个不同的数据集上进行了测试,其中包含形状和大小各异的原木的真实室外图像。实验结果表明,所提出的方法不仅获得与最新系统相同的结果,而且产生了更加稳定的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号