首页> 外文OA文献 >Parallel Connection of Silicon Carbide MOSFETs for Multichip Power Modules
【2h】

Parallel Connection of Silicon Carbide MOSFETs for Multichip Power Modules

机译:用于多芯片功率模块的碳化硅mOsFET的并联连接

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

SiC technology has been under a rapid growth in the last decades, thanks to its wide band gap material superiorities, which leads to a higher breakdown voltage, a higher temperature limitation, a smaller thermal impedance and a faster switching speed of the SiC power devices compared to Si. Among the several kinds of SiC power devices, SiC MOSFET is considered to be the most promising to be commercialized and an alternative of Si IGBT, because of its unipolar device structure, voltage gate control and normally-off transistor property.Along with the benefits of SiC MOSFETs, there are also some challenges from the manufacture and application points of view. The less mature manufacture process limits the yield and the single die size of the SiC MOSFETs, which results a smaller current capability of a single SiC MOSFET die. Consequently, in high current application, the paralleled connections of SiC MOSFET dies are required. In addition, the fast switching speed makes SiC MOSFETs more sensitive to the circuit parasitic parameters. The circuit parameters in the present Si IGBT power module packaging technology may be too critical for SiC MOSFETs.This dissertation investigates the switching characterization of SiC MOSFETs regarding the influence of switching loop stray inductance and common source stray inductance. The pulse current measurement methods of fast switching speed power devices are summarized and a new method witch silicon steel current transformer is presented.With the knowledge of the switching characterization of SiC MOSFETs, the paralleled connection of SiC MOSFETs is studied regarding both the influence of device mismatch and circuit mismatch. The circuit mismatches of switching loop stray inductance and common source stray inductance are first analyzed and experimentally investigated.Then the DBC layout of a power module with paralleled SiC MOSFETs is presented and mathematically analyzed considering the influence of the circuit mismatch among the paralleled dies. It is revealed that there is a large common source stray inductance mismatch among the paralleled SiC MOSFETs, which leads to a significant transient current imbalance during the switching period. Besides the circuit mismatch, a current coupling effect is also found in the DBC layout, which aggravates the transient current imbalance among the paralleled SiC MOSFET dies. The discussions about the effects of the auxiliary source connections for the paralleled dies are presented and the source of the transient current imbalance is concluded.To mitigate the transient current imbalance in the traditional DBC layout, a novel DBC layout with split output is proposed. First, the working mechanism of the split output topology is studied, which turns out to be able to improve the efficiency compared to the traditional half bridge. Besides the split output topology benefits, compared to the traditional DBC layout, the proposed DBC layout significantly reduces the circuit mismatch and current coupling effect, which consequently improves the current sharing performance among the paralleled SiC MOSFET dies in the power module. The proposed DBC layout is not only limited for SiC MOSFETs, but also for Si IGBTs and other voltage controlled devices.of the circuit mismatch on the paralleled connection of SiC MOSFETs. It reveals the circuit mismatch and the current imbalance in the traditional DBC layout of power modules with paralleled dies. Based on that, a novel DBC layout for current imbalance mitigation is proposed. The more important point is that it starts the study of the DBC layout regarding the current distribution among the paralleled dies in the power module. The analysis method of the DBC layout provides new design guidelines and evaluation criteria of the DBC layout for multichip power modules with paralleled power semiconductor dies.
机译:碳化硅技术由于其宽带隙材料的优势,在过去的几十年中一直在快速增长,与碳化硅功率器件相比,碳化硅技术具有更高的击穿电压,更高的温度限制,更小的热阻和更快的开关速度来Si。在几种SiC功率器件中,由于SiC MOSFET具有单极器件结构,电压栅极控制和常关晶体管特性,因此被认为是最有希望被商业化的产品,并且是Si IGBT的替代产品。 SiC MOSFET从制造和应用的角度来看也存在一些挑战。较不成熟的制造工艺限制了SiC MOSFET的成品率和单个芯片尺寸,从而导致单个SiC MOSFET芯片的电流容量较小。因此,在大电流应用中,需要SiC MOSFET管芯的并联连接。此外,快速的开关速度使SiC MOSFET对电路寄生参数更加敏感。目前的Si IGBT功率模块封装技术中的电路参数对于SiC MOSFET可能太关键。本文研究了SiC MOSFET的开关特性,研究了开关环路杂散电感和共源杂散电感的影响。总结了快速开关速度功率器件的脉冲电流测量方法,并提出了一种新型的硅钢电流互感器。在了解SiC MOSFET的开关特性的基础上,研究了SiC MOSFET并联对器件的影响。不匹配和电路不匹配。首先对开关回路杂散电感和共源杂散电感的电路失配进行了分析和实验研究,然后提出了具有并联SiC MOSFET的功率模块的DBC布局,并考虑了并联裸片之间的电路失配的影响,对其进行了数学分析。结果表明,并联的SiC MOSFET之间存在很大的共源杂散电感失配,这会导致开关期间的瞬态电流明显失衡。除了电路失配以外,在DBC布局中还发现了电流耦合效应,这加剧了并联SiC MOSFET管芯之间的瞬态电流不平衡。讨论了辅助电源连接对并联模具的影响,并总结了瞬态电流不平衡的根源。为缓解传统DBC布局中的瞬态电流不平衡,提出了一种新型的分路输出DBC布局。首先,研究了分离输出拓扑的工作机制,与传统的半桥相比,它能够提高效率。与传统的DBC布局相比,除具有分离输出拓扑的优势外,建议的DBC布局还大大减少了电路失配和电流耦合效应,从而提高了功率模块中并联SiC MOSFET管芯之间的均流性能。提出的DBC布局不仅限于SiC MOSFET,而且还限于Si IGBT和其他压控器件.SiC MOSFET并联时电路失配。它揭示了具有并联管芯的功率模块的传统DBC布局中的电路失配和电流不平衡。在此基础上,提出了一种新颖的减轻电流不平衡的DBC布局。更重要的一点是,它开始研究有关电源模块中并联管芯之间电流分布的DBC布局。 DBC布局的分析方法为具有并联功率半导体管芯的多芯片电源模块提供了新的设计指南和DBC布局的评估标准。

著录项

  • 作者

    Li Helong;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号