首页> 外文OA文献 >Artificial Neural Network Algorithm for Condition Monitoring of DC-link Capacitors Based on Capacitance Estimation
【2h】

Artificial Neural Network Algorithm for Condition Monitoring of DC-link Capacitors Based on Capacitance Estimation

机译:基于电容估计的直流环节电容状态监测人工神经网络算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In power electronic converters, reliability of DC-link capacitors is one of the critical issues. The estimation of their health status as an application of condition monitoring have been an attractive subject for industrial field and hence for the academic research filed as well. More reliable solutions are required to be adopted by the industry applications in which usage of extra hardware, increased cost, and low estimation accuracy are the main challenges. Therefore, development of new condition monitoring methods based on software solutions could be the new era that covers the aforementioned challenges. A capacitance estimation method based on Artificial Neural Network (ANN) algorithm is therefore proposed in this paper. The implemented ANN estimated the capacitance of the DC-link capacitor in a back-toback converter. Analysis of the error of the capacitance estimation is also given. The presented method enables a pure software based approach with high parameter estimation accuracy.
机译:在电力电子转换器中,直流母线电容器的可靠性是关键问题之一。作为状态监测的应用,对它们的健康状况的估计已成为工业领域的诱人主题,因此对于学术研究也很有吸引力。工业应用需要采用更可靠的解决方案,其中额外硬件的使用,增加的成本和较低的估计精度是主要挑战。因此,基于软件解决方案的新状态监测方法的开发可能是涵盖上述挑战的新时代。因此,本文提出了一种基于人工神经网络算法的电容估计方法。实施的ANN估算了背靠背转换器中直流母线电容器的电容。还给出了电容估计误差的分析。提出的方法实现了具有高参数估计精度的基于纯软件的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号