首页> 外文OA文献 >TCSC Nonlinear Adaptive Damping Controller Design Based on RBF Neural Network to Enhance Power System Stability
【2h】

TCSC Nonlinear Adaptive Damping Controller Design Based on RBF Neural Network to Enhance Power System Stability

机译:基于RBF神经网络的TCsC非线性自适应阻尼控制器设计提高电力系统稳定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, a nonlinear adaptive damping controller based on radial basis function neural network (RBFNN), which can infinitely approximate to nonlinear system, is proposed for thyristor controlled series capacitor (TCSC). The proposed TCSC adaptive damping controller can not only have the characteristics of the conventional PID, but adjust the parameters of PID controller online using identified Jacobian information from RBFNN. Hence, it has strong adaptability to the variation of the system operating condition. The effectiveness of the proposed controller is tested on a two-machine five-bus power system and a four-machine two-area power system under different operating conditions in comparison with the lead-lag damping controller tuned by evolutionary algorithm (EA). Simulation results show that the proposed damping controller achieves good robust performance for damping the low frequency oscillations under different operating conditions and is superior to the lead-lag damping controller tuned by EA.
机译:本文提出了一种基于径向基函数神经网络(RBFNN)的非线性自适应阻尼控制器,该控制器可以无限逼近非线性系统,用于可控硅串联电容器(TCSC)。提出的TCSC自适应阻尼控制器不仅具有常规PID的特性,而且可以利用从RBFNN中识别出的Jacobian信息在线调整PID控制器的参数。因此,它对系统工作条件的变化具有很强的适应性。与通过进化算法(EA)调整的超前-滞后阻尼控制器相比,该控制器在不同运行条件下的两机五总线电力系统和四机两区域电力系统上的有效性进行了测试。仿真结果表明,所提出的阻尼控制器在不同工况下对低频振荡具有良好的鲁棒性,并且优于EA调谐的超前滞后控制器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号