首页> 外文OA文献 >Image based Monument Recognition using Graph based Visual Saliency
【2h】

Image based Monument Recognition using Graph based Visual Saliency

机译:基于图像的视觉显着性的基于图像的纪念碑识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This article presents an image-based application aiming at simple image classification of well-known monuments in the area of Heraklion, Crete, Greece. This classification takes place by utilizing Graph Based Visual Saliency (GBVS) and employing Scale Invariant Feature Transform (SIFT) or Speeded Up RobustFeatures (SURF). For this purpose, images taken at various places of interest are being compared to an existing database containing images of these places at different angles and zoom. The time required for the matching progress in such application is an important element. To this goal, the images have been previously processed according to the Graph Based Visual Saliency model in order to keep either SIFT or SURF features corresponding to the actual monuments while the background “noise” is minimized. The application is then able to classify these images, helping the user to better understand what he/she sees and in which area the image has been taken. Experiments are performed to verify that the proposed approach improves the time needed for the classification without affecting the correctness of the results.
机译:本文介绍了一种基于图像的应用程序,旨在对希腊克里特岛伊拉克利翁地区的著名古迹进行简单的图像分类。通过使用基于图的视觉显着性(GBVS)并使用尺度不变特征变换(SIFT)或加速鲁棒特征(SURF)进行分类。为此,将在各个感兴趣位置拍摄的图像与现有数据库进行比较,该数据库包含不同角度和缩放比例的这些位置的图像。在这种应用中,匹配进度所需的时间是一个重要因素。为此,图像已事先根据基于图形的视觉显着性模型进行了处理,以保持SIFT或SURF特征与实际纪念碑相对应,同时将背景“噪声”最小化。然后,应用程序可以对这些图像进行分类,从而帮助用户更好地了解他/她所看到的图像以及在哪个区域拍摄了图像。进行实验以验证所提出的方法在不影响结果正确性的情况下改善了分类所需的时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号