首页> 外文OA文献 >Building the Winning Percentage Model to Predict Regular Season Results of NBA Teams Based on Regression and Time Series Analysis of Common Basketball Statistics
【2h】

Building the Winning Percentage Model to Predict Regular Season Results of NBA Teams Based on Regression and Time Series Analysis of Common Basketball Statistics

机译:基于回归和普通篮球统计时间序列分析建立NBa球队常规赛成绩的胜率百分比模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the trend to apply statistics to predict sport games, the purpose of this paper is to find a model that can help to predict the percentage of games won for NBA teams during a season based on data for team and individual player performance. Multiple linear regression is used to build a predictive model, while time series analysis is used to assist with model selection. Great care is taken here, because statistical software will build a model regardless of collinearity, which means the model contains highly correlated variables, and despite whether regression assumptions are met. A general model that can predict all teams’ performance is found. The model basically fits every team, and even the worst predictions look decent. However, each team has its own philosophy, so each has different significant factors. Thus models built for individual teams perform better.
机译:随着统计数据趋向于预测体育比赛的趋势,本文的目的是找到一个模型,该模型可以根据球队和个人球员的表现数据来预测一个赛季NBA球队的获胜百分比。多元线性回归用于建立预测模型,而时间序列分析用于辅助模型选择。这里要格外小心,因为无论共线性如何,统计软件都会构建模型,这意味着该模型包含高度相关的变量,尽管是否满足回归假设。找到了可以预测所有团队绩效的通用模型。该模型基本上适合每个团队,即使最差的预测也看起来不错。但是,每个团队都有自己的理念,因此每个团队都有不同的重要因素。因此,为单个团队构建的模型表现更好。

著录项

  • 作者

    Ou Sinong;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号