首页> 外文OA文献 >Comprehensive ecosystem model-data synthesis using multiple data sets at two temperate forest free-air CO2 enrichment experiments: Model performance at ambient CO2 concentration
【2h】

Comprehensive ecosystem model-data synthesis using multiple data sets at two temperate forest free-air CO2 enrichment experiments: Model performance at ambient CO2 concentration

机译:综合生态系统模型 - 在两个温带森林自由空气CO2浓缩实验中使用多个数据集进行数据合成:环境CO2浓度下的模型性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Free-air CO2 enrichment (FACE) experiments provide a remarkable wealth of data which can be used to evaluate and improve terrestrial ecosystem models (TEMs). In the FACE model-data synthesis project, 11 TEMs were applied to two decadelong FACE experiments in temperate forests of the southeastern U.S.the evergreen Duke Forest and the deciduous Oak Ridge Forest. In this baseline paper, we demonstrate our approach to model-data synthesis by evaluating the models' ability to reproduce observed net primary productivity (NPP), transpiration, and leaf area index (LAI) in ambient CO2 treatments. Model outputs were compared against observations using a range of goodness-of-fit statistics. Many models simulated annual NPP and transpiration within observed uncertainty. We demonstrate, however, that high goodness-of-fit values do not necessarily indicate a successful model, because simulation accuracy may be achieved through compensating biases in component variables. For example, transpiration accuracy was sometimes achieved with compensating biases in leaf area index and transpiration per unit leaf area. Our approach to model-data synthesis therefore goes beyond goodness-of-fit to investigate the success of alternative representations of component processes. Here we demonstrate this approach by comparing competing model hypotheses determining peak LAI. Of three alternative hypotheses(1) optimization to maximize carbon export, (2) increasing specific leaf area with canopy depth, and (3) the pipe modelthe pipe model produced peak LAI closest to the observations. This example illustrates how data sets from intensive field experiments such as FACE can be used to reduce model uncertainty despite compensating biases by evaluating individual model assumptions.
机译:自由空气二氧化碳富集(FACE)实验提供了可观的丰富数据,可用于评估和改善陆地生态系统模型(TEM)。在FACE模型数据综合项目中,在美国东南部常绿的杜克森林和落叶橡树岭森林的温带森林中,将11个TEM用于两个长达十年的FACE实验。在此基础论文中,我们通过评估模型在环境CO2处理中重现观察到的净初级生产力(NPP),蒸腾作用和叶面积指数(LAI)的能力,证明了我们用于模型数据综合的方法。使用一系列拟合优度统计将模型输出与观察值进行比较。许多模型在观察到的不确定性内模拟了年度NPP和蒸腾作用。但是,我们证明了拟合优度值不一定表示成功的模型,因为可以通过补偿组件变量中的偏差来实现仿真精度。例如,有时通过补偿叶面积指数和每单位叶面积的蒸腾量的偏差来达到蒸腾精度。因此,我们进行模型数据综合的方法超出了拟合优度,以研究组件过程的替代表示形式的成功。在这里,我们通过比较确定峰值LAI的竞争模型假设来证明这种方法。在三个备选假设中(1)优化以最大程度地释放碳,(2)随着冠层深度增加特定叶面积,(3)管道模型管道模型产生的LAI峰值与观测值最接近。该示例说明了如何通过密集场实验(例如FACE)获得的数据集可用于减少模型不确定性,尽管可以通过评估各个模型假设来补偿偏差。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号