首页> 外文OA文献 >Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: Longitudinal relaxation dispersion for a dipole-coupled spin-1/2 pair.
【2h】

Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: Longitudinal relaxation dispersion for a dipole-coupled spin-1/2 pair.

机译:交换介导的取向随机化引起的核磁弛豫:偶极耦合自旋-1/2对的纵向弛豫分散。

摘要

In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water (1)H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft-tissue contrast in clinical magnetic resonance imaging.
机译:在复杂的生物或胶体样品中,只要有严格的核自旋弛豫理论,使用场循环技术的磁弛豫弥散(MRD)实验就可以表征分子运动的时间尺度,范围从纳秒到微秒。在凝胶,交联蛋白和固定的大分子成分与流动溶剂相共存的生物组织中,溶剂(或助溶剂)物质中的核自旋主要通过各向异性核(电)的交换介导的取向随机化(EMOR)而松弛四极或磁偶极)联轴器。控制MRD的物理或化学交换过程通常发生在微秒或更长的时间范围内,而传统的自旋弛豫微扰理论则被打破了。因此,需要更一般的松弛理论。这种基于EMOR机制的随机Liouville方程(SLE)的理论适用于单个四极自旋I =1。在这里,我们介绍了偶极耦合自旋1/2对的相应理论。据我们所知,这是在缩小运动范围之外首次治疗偶极MRD。基于SLE空间部分的解析解,我们展示了如何有效地计算积分纵向松弛率。具有选择性或非选择性激发的自旋和异旋均得到处理。对于实验重要的稀疏机制,其中只有一小部分自旋对被固定,我们获得了自动松弛和交叉松弛速率的简单解析表达式,这些表达式可以推广众所周知的所罗门方程。这些概括的结果将用于例如间歇性蛋白质动力学的生物物理研究。此外,它们代表了朝着在生物组织中严格释放水(1)H的理论迈出的第一步,这是在临床磁共振成像中阐明软组织对比度的分子基础的前提。

著录项

  • 作者

    Chang Zhiwei; Halle Bertil;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号