首页> 外文OA文献 >Inductive Buck Converter Based on Low Voltage NanoScale CMOS
【2h】

Inductive Buck Converter Based on Low Voltage NanoScale CMOS

机译:基于低压Nanoscale CmOs的电感式降压转换器

摘要

Cascode architecture is an efficient and cost effective design technique to overcome the reliability issues regarding Gate-Oxide breakdown. This method is employed for circuits such as DC-DC converters and power amplifiers operating with input supply voltage higher than transistor breakdown voltage. Design of the gate bias circuit which controls the switching operation of the power stage transistors is the main challenge in this technique, especially for the power stage with more than two stacked transistors. The bias circuit generates the required gate drive signals with proper timing to avoid the voltage stress condition.This thesis presents design and simulation results of the buck type DC-DC converter based on 45nm CMOS technology. Breakdown voltage of the transistor is 1.1V. Therefore, 6-stacked power stage configuration is proposed for a fixed input voltage of 6V by considering a maximum supply voltage of 1V for each transistor. Switching operation of the power stage is controlled by driving signals for PMOS and NMOS stacked tran-sistors. In order to generate the driver signal, three cascade stages of high speed level shifters are employed to shift up the driver signal by 5V. Switching frequency is 52MHz and open loop control scheme is considered for the buck converter. The control circuit consists of a Schmitt trigger and a Non-Overlapping switching circuit to gener-ate the driving signals with adjusted dead times. The designed buck converter provides an output voltage of 1.25V and has an efficiency of 79.2% with a fixed input power of 207mW. A second buck converter circuit is also presented that operates under variable battery voltages from 3.5V to 6V. Using the designed circuit the output voltage is 1.25V and a maximum power conversion efficiency of 81.3% is obtained for an input voltage of 3.9V. The output power is 200mW and a high power density of 195mW/mm3 is achieved
机译:Cascode架构是一种有效且具有成本效益的设计技术,可以克服有关Gate-Oxide击穿的可靠性问题。此方法用于输入电压高于晶体管击穿电压的DC-DC转换器和功率放大器等电路。控制功率级晶体管的开关操作的栅极偏置电路的设计是该技术的主要挑战,尤其是对于具有两个以上堆叠晶体管的功率级而言。偏置电路以适当的时序产生所需的栅极驱动信号,以避免电压应力条件的发生。本文介绍了基于45nm CMOS技术的降压型DC-DC转换器的设计和仿真结果。晶体管的击穿电压为1.1V。因此,通过考虑每个晶体管的1V最大电源电压,为6V的固定输入电压提出了6级功率级配置。功率级的开关操作由PMOS和NMOS堆叠晶体管的驱动信号控制。为了生成驱动器信号,采用了三个级联的高速电平移位器来将驱动器信号上移5V。开关频率为52MHz,降压转换器考虑采用开环控制方案。控制电路由施密特触发器和不重叠开关电路组成,以产生具有调整的死区时间的驱动信号。设计的降压转换器提供1.25V的输出电压,在207mW的固定输入功率下效率为79.2%。还介绍了第二个降压转换器电路,该电路可在3.5V至6V的可变电池电压下工作。使用设计的电路,输出电压为1.25V,输入电压为3.9V时,最大功率转换效率为81.3%。输出功率为200mW,可实现195mW / mm3的高功率密度

著录项

  • 作者

    Fouladi Azarnaminy Arash;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号