首页> 外文OA文献 >Three Dimensional Numerical Simulation, Design and Structural Optimization of Pneumatically Actuated Cell Stretching Device
【2h】

Three Dimensional Numerical Simulation, Design and Structural Optimization of Pneumatically Actuated Cell Stretching Device

机译:气动单元拉伸装置的三维数值模拟,设计及结构优化

摘要

Utilizing biomimetic mechanical forces for differentiation of stem cells toward osteogenic, cardiomyocytes and other cell types is a technique that has been applied increasingly in recent years. Different types of apparatuses and devices are being designed and fabricated in order to accurately direct these mechanical forces onto stem cells in both 2D and 3D configurations. In this thesis, a novel and easy-to-fabricate structure is designed to provide mechanical stimulation of cells in a cell culture environment. This is facilitated by means of pneumatic actuation. The pneumatic actuation of the hyperelastic PolyDiMethylSiloxane (PDMS) material directs a tensile strain on cell population in the environment. The structure has been previously designed at Micro- and Nanosystems research group to provide equiaxial strain. In this study, steps are taken to modify the structure to provide not only the equiaxial strain, but also uniaxial strain for stimulation of stem cells in vitro. As the primary objective of this study, the modified structure makes two aforementioned types of mechanical strain achievable.In this study, computational model of the device is developed based on Neo-Hookean hyperelastic material model using COMSOL Multiphysics 5.1 software. Finite element based model of the structure is implemented and numerical simulations are performed to analyze stress and strain under applied vacuum. The structure is then optimized based on various geometric parameters to improve the performance of the device according to defined requirements and objective functions. The optimized structure is then further analyzed to completely identify the performance characteristics of the device. Two different geometries are proposed for the device structure. The designed structures are demonstrated to provide relatively good performance based on requirements. The structures provide rather high strain magnitude in case of equiaxial strain. In case of uniaxial strain, they provide a relatively high average value for the first principal strain and a low average value for the second principal strain. The structures also exhibit an almost uniform uniaxial strain field. The results indicate an acceptable performance of the devices in both cases.
机译:利用仿生机械力使干细胞向成骨细胞,心肌细胞和其他细胞类型分化是近年来已越来越多地应用的技术。正在设计和制造不同类型的装置和设备,以便以2D和3D构造将这些机械力准确地引导到干细胞上。在本文中,设计了一种新颖且易于制造的结构以在细胞培养环境中提供对细胞的机械刺激。这通过气动致动来促进。超弹性的聚二甲基硅氧烷(PDMS)材料的气动驱动使环境中的细胞种群受到拉伸应变。该结构先前由Micro-and Nanosystems研究小组设计,可提供等轴应变。在这项研究中,采取了一些步骤来修改结构,以不仅提供等轴应变,而且还提供单轴应变,以在体外刺激干细胞。作为本研究的主要目的,改进的结构使上述两种机械应变均可实现。在本研究中,使用COMSOL Multiphysics 5.1软件基于Neo-Hookean超弹性材料模型开发了该装置的计算模型。实现了基于有限元的结构模型,并进行了数值模拟,以分析施加真空下的应力和应变。然后根据各种几何参数对结构进行优化,以根据定义的要求和目标功能来改善设备的性能。然后,将对优化后的结构进行进一步分析,以完全确定器件的性能特征。对于器件结构,提出了两种不同的几何形状。演示了设计的结构,可以根据要求提供相对较好的性能。在等轴应变的情况下,该结构提供了相当高的应变幅度。在单轴应变的情况下,它们为第一主应变提供较高的平均值,为第二主应变提供较低的平均值。该结构还表现出几乎均匀的单轴应变场。结果表明在两种情况下设备的性能均可接受。

著录项

  • 作者

    Karimi Saeed;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号