首页> 外文OA文献 >Local features for visual object matching and video scene detection
【2h】

Local features for visual object matching and video scene detection

机译:用于视觉对象匹配和视频场景检测的本地功能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Local features are important building blocks for many computer vision algorithms such as visual object alignment, object recognition, and content-based image retrieval. Local features are extracted from an image by a local feature detector and then the detected features are encoded using a local feature descriptor. The resulting features based on the descriptors, such as histograms or binary strings, are used in matching to find similar features between objects in images.In this thesis, we deal with two research problem in the context of local features for object detection: we extend the original local feature detector and descriptor performance benchmarks from the wide baseline setting to the intra-class matching; and propose local features for consumer video scene boundary detection.In the intra-class matching, the visual appearance of objects semantic class can be very different (e.g., Harley Davidson and Scooter in the same motorbike class) and making the task more difficult than wide baseline matching. The performance of different local feature detectors and descriptors are evaluated over three different image databases and results for more advance analysis are reported.In the second part of the thesis, we study the use of Bag-of-Words (BoW) in the video scene boundary detection. In literature there have been several approaches to the task exploiting the local features, but based on the author’s knowledge, none of them are practical in an online processing of user videos. We introduce an online BoW based scene boundary detector using a dynamic codebook, study the optimal parameters for the detector and compare our method to the existing methods. Precision and recall curves are used as a performance metric.The goal of this thesis is to find the best local feature detector and descriptor for intra-class matching and develop a novel scene boundary detection method for online applications.
机译:局部特征是许多计算机视觉算法的重要构建块,例如视觉对象对齐,对象识别和基于内容的图像检索。局部特征检测器从图像中提取局部特征,然后使用局部特征描述符对检测到的特征进行编码。基于描述符的结果特征(例如直方图或二进制字符串)用于匹配以在图像中的对象之间找到相似的特征。在本文中,我们针对对象检测的局部特征处理了两个研究问题:从宽基线设置到类内匹配的原始局部特征检测器和描述符性能基准;在类内匹配中,对象语义类的视觉外观可能会非常不同(例如,同一摩托车类中的Harley Davidson和Scooter),这使任务变得比广泛更难基线匹配。在三个不同的图像数据库上评估了不同的局部特征检测器和描述符的性能,并报告了进一步进行分析的结果。论文的第二部分,我们研究了单词场景(BoW)在视频场景中的使用边界检测。在文献中,有几种方法可以利用本地特征来完成任务,但是根据作者的知识,这些方法都无法在线处理用户视频。我们使用动态密码本介绍了基于在线BoW的场景边界检测器,研究了检测器的最佳参数并将我们的方法与现有方法进行了比较。精确度和召回曲线被用作性能指标。本文的目的是寻找用于类内匹配的最佳局部特征检测器和描述符,并为在线应用开发一种新颖的场景边界检测方法。

著录项

  • 作者

    Hietanen Antti;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号