首页> 外文OA文献 >Genetic Algorithms Based Camera Autofocus Optimization
【2h】

Genetic Algorithms Based Camera Autofocus Optimization

机译:基于遗传算法的相机自动聚焦优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Autofocus is critical for a camera system due to its massive impact on image quality. It is essential to get correct focus on the region of interest without user interaction. Contrast based focusing is the most prevalent form of focusing which uses statistics from the image signal processor (ISP) to guide lens movements. An autofocus system consists of numerous hardware and software components and each component is especially optimized. Autofocus system design consists of repetitive and tedious field tests on real scenes. This approach, however, is very time consuming and laborious.This thesis presents an optimization methodology to expedite autofocus design and improve camera performance. We propose the use of genetic algorithms (a branch of evolutionary algorithms) to improve autofocus. Genetic algorithms are derived from the biological model of evolution and natural selection. In this thesis, we create an environment in which potential solutions can evolve. We demonstrate the effectiveness of our method by optimizing focus kernel and step-length of a camera lens. The fitness of these parameters is measured using the contrast from focus statistics, shape of the focus statistics curve and time taken for focusing.Input images from different ambient conditions are captured using consumer phones and are utilized in optimization to get effective clues for autofocus. Autofocus design resulting from our methodology is tested in retail phones to verify its application and efficiency. Improvements in autofocus are observed including enhanced contrast extraction and reduced time-to-focus. Biggest performance gain is seen in low-light as the available contrast is low and it becomes even more important to obtain better focus statistics. Our autofocus design results are deployed to commercial camera phones which proves the effectiveness. Optimizing camera autofocus is a very industry specific topic and this thesis presents a possible solution to this optimization problem.
机译:由于自动对焦会对图像质量产生巨大影响,因此自动对焦对于相机系统至关重要。在没有用户交互的情况下,正确关注关注区域至关重要。基于对比度的对焦是最普遍的对焦形式,它使用来自图像信号处理器(ISP)的统计数据来引导镜头移动。自动对焦系统由许多硬件和软件组件组成,并且每个组件都经过了特别优化。自动对焦系统设计包括对真实场景的重复而乏味的现场测试。然而,这种方法非常耗时且费力。本文提出了一种优化方法,可以加快自动对焦设计并提高相机性能。我们建议使用遗传算法(进化算法的一个分支)来改善自动对焦。遗传算法源自进化和自然选择的生物学模型。在本文中,我们创建了一个环境,可以在其中发展潜在的解决方案。我们通过优化聚焦内核和相机镜头的步长来证明我们方法的有效性。这些参数的适用性是使用聚焦统计的对比度,聚焦统计曲线的形状和聚焦所需的时间来测量的。使用消费类手机捕获来自不同环境条件的输入图像,并将其用于优化以获得有效的自动聚焦线索。由我们的方法得出的自动对焦设计已在零售电话中进行了测试,以验证其应用和效率。观察到自动对焦的改进,包括增强了对比度提取和缩短了对焦时间。由于可用的对比度较低,因此在弱光条件下可以看到最大的性能提升,获得更好的聚焦统计数据变得更加重要。我们的自动对焦设计结果已部署到商用照相手机中,证明了其有效性。优化相机的自动对焦是一个非常特定的行业主题,本论文提出了解决此优化问题的可能方法。

著录项

  • 作者

    Ahmad Azaz;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号