首页> 外文OA文献 >Foveated Non-Local Means Denoising of Color Images, with Cross-Channel Paradigm.
【2h】

Foveated Non-Local Means Denoising of Color Images, with Cross-Channel Paradigm.

机译:具有跨通道范例的彩色图像去噪非局部均值去噪。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Foveation, a peculiarity of the HVS, is characterized by a sharp image having maximal acuity at the central part of the retina, the fovea. The acuity rapidly decreases towards the periphery of the visual field. Foveated imaging was recently investigated for the purpose of image denoising in the Foveated Non-local Means (FNLM) algorithm, and it was shown that for natural images the foveated self-similarity is a far more effective regularization prior than the conventional windowed self-similarity. Color images exhibit spectral redundancy across the R, G and B channels which can be exploited to reduce the effects of noise.We extend the FNLM algorithm to the removal of additive white Gaussian noise from color images. The proposed Color-mixed Foveated NL-means algorithm, denominated as C-FNLM, implements the concept of foveated self-similarity, along with a cross-channel paradigm to exploit the correlation between color channels. The patch similarity is measured through an updated foveated distance for color images. In C-FNLM, we derive the explicit construction of an unified operator which explores the spatially variant nature of color perception in the HVS.We develop a framework for designing the linear operator that simultaneously performs foveation and color mixing. Within this framework, we construct several parametrized families of the color-mixing operation. Our analysis shows that the color-mixed foveation is a far more effective regularity assumption than the windowing conventionally used in NL-means, especially for color image denoising where substantial improvement was observed in terms of contrast and sharpness. Moreover, the unified operator is introduced at a negligible cost in terms of the computational complexity.
机译:中心凹是HVS的特有特征,其特征是清晰的图像在视网膜中央凹即中央凹处具有最大的敏锐度。视力朝着视野的周围迅速降低。最近研究了凹影成像,目的是利用凹影非局部均值(FNLM)算法对图像进行去噪,结果表明,对于自然图像,凹影自相似性比常规的窗口自相似性有效得多。 。彩色图像在R,G和B通道上表现出频谱冗余,可以利用这些冗余来减少噪声的影响。我们将FNLM算法扩展为从彩色图像中去除加性高斯白噪声。所提出的颜色混合中心凹NL-均值算法(称为C-FNLM)实现了中心凹自相似性的概念以及跨通道范式,以利用颜色通道之间的相关性。通过更新的彩色图像的凹入距离来测量斑块相似度。在C-FNLM中,我们推导了统一算子的显式构造,该算子探索了HVS中颜色感知的空间变异性质。我们开发了一个框架,用于设计同时执行凹入和混色的线性算子。在此框架内,我们构造了几个参数化的混色操作族。我们的分析表明,与常规的NL-means方法相比,混色偏心是一个更有效的规律性假设,尤其是对于彩色图像去噪而言,在对比度和清晰度方面观察到了很大的改善。此外,就计算复杂度而言,统一运算符的引入成本可忽略不计。

著录项

  • 作者

    Saksena Raj Sutanshu;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号