首页> 外文OA文献 >Bandlimited Digital Predistortion of Wideband RF Power Amplifiers
【2h】

Bandlimited Digital Predistortion of Wideband RF Power Amplifiers

机译:带宽数字预失真宽带射频功率放大器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The increase in the demand for high data rates has led to the deployment of wider bandwidths and complex waveforms in wireless communication systems. Multicarrier waveforms such as orthogonal frequency division multiplexing (OFDM) employed in modern systems are very sensitive to the transmitter chain nonidealities due to their high peak-to-average-power-ratio (PAPR) characteristic. They are therefore affected by nonlinear transmitter components particularly the power amplifier (PA). Moreover, to enhance power efficiency, PAs typically operate near saturation region and hence become more nonlinear. Power efficiency is highly desirable especially in battery powered and portable devices as well as in base stations. Hence there is a clear need for efficient linearization algorthms which improve power efficiency while maintaining high spectral efficiency.Digital predistortion (DPD) has been recognized as one of the most effective methods in mitigating PA nonlinear distortions. The method involves the application of inverse PA nonlinear function upstream of the PA such that the overall system output has a linear amplification. The computation of the nonlinearity profile and the inversion of the PA function are particularly difficult and complicated especially when involving wideband radio access waveforms, and therefore memory effects, which are being employed in modern communication systems, such as in Long Term Evolution/Advanced (LTE/LTE-A). In the recent technical literature, different approaches which focus on the linearization of specific frequency bands or sub-bands only have been developed to alleviate this problem, thereby reducing the complexity of DPD. In this thesis, we focus on the development and characterization of a bandlimited DPD solution specifically tailored towards the linearization at and around the main carrier(s) in single carrier deployment or contiguous carrier aggregation of two or more component carriers. In terms of parameter identification, the solution is based on the reduced-complexity closed-loop decorrelation-based parameter learning principle, which is also able to track time-varying changes in the transmitter components adaptively. The proposed bandlimited solution is designed to linearize the inband and out-of-band (OOB) distortions in the immediate vicinity of the main carrier(s) while assuming the distortions more far away in the spectrum are suppressed by transmit or duplex filters. This is implemented using FIR filters to limit the bandwidth expansion during basis functions generation and to restrain the bandwidth of the feedback observation signal, thus reducing the DPD sample rates in both the main path processing and the parameter learning. The performance of the proposed bandlimited DPD solution is evaluated using comprehensive simulations involving memoryless and memory-based PA models, as well as true RF measurements using commercial LTE-A base station and mobile device PAs. The achieved results validate and demonstrate efficient suppression of inband and OOB distortions in real-world application scenarios. Furthermore, the bandlimited DPD consistently outperforms the conventional DPD solutions in the memory-based PA model and practical PA scenarios in suppressing the OOB distortion in the immediate vicinity of the main carrier(s) by approximately 1 - 2 dB. The results provide sufficient grounds for the application of the bandlimited DPD solution in the classical single carrier deployment or in contiguous carrier aggregation of two or more component carriers where conventional DPD solutions would otherwise be highly complex.
机译:对高数据速率的需求的增加已经导致在无线通信系统中部署更宽的带宽和复杂的波形。由于其高峰均功率比(PAPR)特性,现代系统中采用的诸如正交频分复用(OFDM)之类的多载波波形对发射机链非理想性非常敏感。因此,它们会受到非线性发射器组件(尤其是功率放大器(PA))的影响。此外,为了提高功率效率,PA通常在饱和区域附近工作,因此变得更加非线性。尤其在电池供电的便携式设备以及基站中,非常需要电源效率。因此,显然需要有效的线性化算法,该算法可在保持高频谱效率的同时提高功率效率。数字预失真(DPD)已被公认为是减轻PA非线性失真的最有效方法之一。该方法包括在PA上游应用逆PA非线性函数,以使整个系统输出具有线性放大。非线性分布的计算和PA函数的求逆特别困难和复杂,尤其是在涉及宽带无线电接入波形时,因此在现代通信系统(如长期演进/高级(LTE))中采用了存储效应/ LTE-A)。在最近的技术文献中,已经开发了仅关注特定频带或子频带的线性化的不同方法来减轻该问题,从而降低了DPD的复杂性。在本文中,我们专注于带宽受限的DPD解决方案的开发和表征,该解决方案专门针对在两个或多个分量载波的单载波部署或连续载波聚合​​中主载波处及其周围的线性化而设计。在参数识别方面,该解决方案基于基于复杂度降低的闭环解相关的参数学习原理,该原理还能够自适应地跟踪发射机组件中的时变变化。拟议的带宽限制解决方案旨在将主载波紧邻区域内的带内和带外(OOB)失真线性化,同时假设通过传输或双工滤波器抑制频谱中更远的失真。这是使用FIR滤波器实现的,以限制基本函数生成期间的带宽扩展并限制反馈观测信号的带宽,从而在主路径处理和参数学习中均降低了DPD采样率。使用涉及无内存和基于内存的PA模型的全面仿真,以及使用商用LTE-A基站和移动设备PA的真实RF测量,可以评估提议的带宽受限DPD解决方案的性能。所获得的结果证实并证明了在实际应用场景中带内和OOB失真的有效抑制。此外,在基于存储器的PA模型和实际的PA场景中,带宽受限的DPD在将主载波紧邻处的OOB失真抑制大约1-2 dB方面始终优于传统DPD解决方案。该结果为带宽受限的DPD解决方案在传统的单载波部署或两个或多个分量载波的连续载波聚合​​中的应用提供了充分的理由,否则传统的DPD解决方案将非常复杂。

著录项

  • 作者

    Mwangi Stanley;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号