首页> 外文OA文献 >Investigating memetic algorithm in solving rough set attribute reduction
【2h】

Investigating memetic algorithm in solving rough set attribute reduction

机译:研究模因算法求解粗糙集属性约简

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Attribute reduction is the problem of selecting a minimal subset from the original set of attributes. Rough set theory has been used for attribute reduction with much success. Since it is well known that finding a minimal subset is a NP-hard problem; therefore, it is necessary to develop efficient algorithms to solve this problem. In this work, we propose a memetic algorithm-based approach inside the rough set theory which is a hybridisation of genetic algorithm and simulated annealing. The proposed method has been tested on UCI data sets. Experimental results demonstrate the effectiveness of this memetic approach when compared with previous available methods. Possible extensions upon this simple approach are also discussed
机译:属性约简是从原始属性集中选择最小子集的问题。粗糙集理论已成功用于属性约简。由于众所周知,找到最小子集是一个NP难题。因此,有必要开发有效的算法来解决这个问题。在这项工作中,我们在粗糙集理论中提出了一种基于模因算法的方法,该方法是遗传算法和模拟退火的混合。所提出的方法已经在UCI数据集上进行了测试。与以前的可用方法相比,实验结果证明了这种模因方法的有效性。还讨论了此简单方法的可能扩展

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号