首页> 外文OA文献 >Using empirical mode decomposition scheme for helicopter main gearbox bearing defect identification
【2h】

Using empirical mode decomposition scheme for helicopter main gearbox bearing defect identification

机译:利用经验模态分解方案进行直升机主变速箱轴承缺陷识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

© 2016 IEEE. Vibration sensors for helicopter health and condition monitoring have been widely employed to ensure the safe operation. Through the years, vibration sensors are now commonly placed on helicopters and have claimed a number of successes in preventing accidents. However, vibration based bearing defect identification remains a challenge since bearing defects signatures are usually contaminated by background noise resulting from variable transmission paths from the bearing to the receiving externally mounted vibration sensors. In this paper, the empirical mode decomposition (EMD) scheme was utilized to analyze vibration signal captured from a CS29 Category 'A' helicopter main gearbox, where bearing faults were seeded on one of the planetary gears bearing of the second epicyclic stage. The EMD scheme decomposed vibration signal into a number of intrinsic mode functions (IMFs) for subsequent envelope analysis. The selection of appropriate IMFs to characterize bearing fault signatures was discussed. The analysis result showed that the bearing fault signatures were successfully characterized and revealed the efficacy of the EMD scheme.
机译:©2016 IEEE。用于直升机健康和状态监测的振动传感器已被广泛采用,以确保安全运行。多年来,振动传感器现在通常放置在直升机上,并在防止事故方面取得了许多成功。然而,基于振动的轴承缺陷识别仍然是一个挑战,因为轴承缺陷特征通常会受到背景噪声的污染,该背景噪声是从轴承到接收外部安装的振动传感器的可变传输路径所导致的。在本文中,经验模态分解(EMD)方案用于分析从CS29类“ A”型直升机主齿轮箱捕获的振动信号,其中轴承故障被植入第二个周转级的行星齿轮轴承之一。 EMD方案将振动信号分解为许多固有模式函数(IMF),用于后续的包络分析。讨论了用于表征轴承故障特征的合适IMF的选择。分析结果表明,已经成功地表征了轴承故障特征,并揭示了EMD方案的有效性。

著录项

  • 作者

    Duan F; Corsar M; Mba D;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号