首页> 外文OA文献 >Modeling, simulation, and design of self-assembling space systems : accurate collision detection, robust time integration, and optimal control
【2h】

Modeling, simulation, and design of self-assembling space systems : accurate collision detection, robust time integration, and optimal control

机译:自组装空间系统的建模,仿真和设计:精确的碰撞检测,强大的时间积分和最佳控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Motivated by issues inherent in modeling and designing self-assembling systems (e.g. multiple collisions, collisions between non-smooth bodies, clumping and jamming behaviors, etc.), the goal of this thesis is to develop robust numerical tools that enable ecient and accurate direct simulation of self assembling systems and the application of optimal control methods to this type of system. The systems will be alternately modeled using linear nite elements, rigid bodies, or chains of rigid bodies. To this end, this work begins with development of a linear programming based collision detection algorithm for general convex polyhedral bodies. The resulting linear program has several features which render it extremely useful in determining the force system at the time of contact in numerical collision integrators. With robust collision detection in hand, three related numerical integration methods for dynamics with collisions are treated; a direct potential-based approach, and exact collision integrator in a discrete variational setting, and a decomposition-based algorithm, again in the discrete variational setting. Finally, several control problems are treated in the Discrete Mechanics and Optimal Control{Constrained (DMOCC) framework in which collisions between non-smooth bodies either need to be avoided or explicitly included in the optimal control problem. A globally stable feedback controller and a family of trajectories for spacecraft docking are also developed and tested with an accurate representation of an optimized CubeSat docking system.
机译:受建模和设计自组装系统固有的问题(例如多次碰撞,非光滑物体之间的碰撞,团块和卡塞行为等)的影响,本论文的目的是开发强大的数值工具,以实现精确有效的直接组装系统的仿真和最佳控制方法在此类系统中的应用。该系统将使用线性nite元素,刚体或刚体链交替建模。为此,这项工作始于针对一般凸多面体的基于线性编程的碰撞检测算法的开发。所得的线性程序具有多个功能,这使其在确定数值碰撞积分器中的接触时确定力系统时非常有用。借助强大的碰撞检测功能,可以对碰撞动力学的三种相关的数值积分方法进行处理;直接基于势的方法,在离散变量设置中使用精确的碰撞积分器,在离散变量设置中再次使用基于分解的算法。最后,在离散力学和最优控制{约束(DMOCC)”框架中处理了几个控制问题,其中需要避免非光滑物体之间的碰撞或将其明确包含在最优控制问题中。还开发并测试了全球稳定的反馈控制器和用于航天器对接的一系列轨迹,并精确表示了优化的CubeSat对接系统。

著录项

  • 作者

    Johnson Gwendolyn Brook;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号