首页> 外文OA文献 >I. Multiple-pulse radio-frequency gradient nuclear magnetic resonance imaging of solids ; II. Optical nuclear magnetic resonance analysis of epitaxial gallium arsenide structures
【2h】

I. Multiple-pulse radio-frequency gradient nuclear magnetic resonance imaging of solids ; II. Optical nuclear magnetic resonance analysis of epitaxial gallium arsenide structures

机译:I.固体多脉冲射频梯度核磁共振成像; II。外延砷化镓结构的光学核磁共振分析

摘要

This dissertation details two techniques for materials analysis by nuclear magnetic resonance.udThe first is a general strategy for recording spin density maps from solids through improved nuclearudmagnetic resonance imaging. The second involves ultrasensitive methods for detecting nuclear magneticudresonance optically and is applicable to semiconductors at low temperature.udConventional liquids magnetic resonance imaging (MRJ) protocols fail in solids, where rapidudlocal-field dephasing of nuclear magnetization precludes the frequency encoding of spatial informationudwith conventional magnetic field gradients. In our approach, a multiple-pulse line-narrowing sequence isuddelivered with a solenoid coil to prolong a solid's effective transverse relaxation time. A radiofrequencyudgradient coil, delivering resonant pulses whose amplitude varies across the sample, is driven in concertudwith the line-narrowing coil to encode spatial information. The practical implementation of this protocoluddemanded the construction of an active Q-spoiling circuit to negate coupling of the two isoresonant coils.udTwo-dimensional Fourier-zeugmatographic images of hexamethylbenzene have been obtained that exhibitud300 µm x 300 µm planar resolution. This imaging protocol is one of the highest sensitivity methods forudimaging solids by NMR (the other involves line narrowing and pulsed DC gradients).udExtraordinary increases in detection sensitivity are required for NMR to study epitaxialudsemiconductor devices. Optical pumping is one route to such increased sensitivity. Here, a transfer ofudangular momentum from polarized light to electrons (via selection rules), and electrons to nuclei (throughudhyperfine couplings), can result in > 10 % nuclear spin polarization in less than 5 seconds at 2 K. A totaludsensitivity gain of 10^5 follows by detecting this large polarization optically, through the inverse process,udallowing collection of the NMR spectra for several GaAs-based epitaxial devices. Previous workersudobserved these spectra to be either power-broadened at the rf levels required to induce optical response, oruddistorted due to the presence of photocarriers during optical detection. An innovation of the Weitekampudgroup was to time-sequence and separately optimize the periods of optical pumping, NMR evolution, andudoptical detection. Although time sequencing in principle allows the collection of multiple-pulse high-resolutionudNMR spectra, it appeared inadequate when applied to a semiconductors heterojunction.udIn conventional NMR, the entire dipole-allowed spectrum may be collected following a singleudpulse. In time-sequenced optical NMR however, the desired interferogram must be built up pointwise byudrepetitively incrementing an evolution time. Although sensitive, this experiment is time consuming andudsensitive to drift. A new optical detection protocol has been developed which removes these problems andudallows NMR spectra to be collected optically in real tillle. In this experiment, a circularly polarizedudreference nuclear hyperfine field is introduced during the precession of a signal field. The observedudluminescence polarization is sensitive to the instantaneous vector sum of the fields, producing Larmorudbeats. With the reference magnetization in equilibrium through the use of either continuous irradiation oruda pulsed spin-lock, the oscillation of luminescence polarization at the Larmor beat frequency is able toudrecord the spectrum of the signal nucleus alone.udA spectrometer has been constructed for implementing both time-sequenced and Larmer-beatudoptical detection of NMR. In order to implement rotation studies in a way compatible with opticaluddetection at 2K, variable-angle Helmholtz coils have been added to the apparatus so that the direction ofudthe static field can be varied. The results of preliminary rotation studies put a surprisingly low upperudbound on the electric fields present at the most rapidly polarizable sites in a AlGaAs/GaAs heterojunction.udThis can be understood in terms of a model where these sites are neutral donors at locations where theudbuilt-in interfacial electric field has fallen off.
机译:本文详细介绍了两种通过核磁共振进行材料分析的技术。 ud第一种是通过改进的核/超磁共振成像记录固体自旋密度图的通用策略。第二种方法涉及用于光学检测核磁共振/核磁共振的超灵敏方法,适用于低温半导体。 ud常规液体磁共振成像(MRJ)协议在固体中失效,其中核磁化的快速超局域相移会排除对核磁共振的频率编码空间信息与常规磁场梯度一起使用。在我们的方法中,多脉冲线变窄序列与电磁线圈一起传递,以延长固体的有效横向弛豫时间。射频/梯度线圈传递共振脉冲,其振幅在整个样本中变化,与变窄线圈协同驱动以编码空间信息。该协议的实际实现要求构造有源Q喷溅电路以消除两个等共振线圈的耦合。 ud已获得六甲基苯的二维傅立叶色谱图像,其平面分辨率为 ud300 µm x 300 µm。该成像协议是通过NMR对固体进行成像的最高灵敏度方法之一(另一种方法涉及线变窄和脉冲DC梯度)。为了提高NMR研究外延/半导体器件所需的检测灵敏度。光泵浦是提高灵敏度的一种途径。在此,角动量从偏振光到电子的转移(通过选择规则),以及电子到核的转移(通过超精细耦合),可以在2 K的不到5秒内导致> 10%的核自旋极化。通过反向过程光学检测到这种大偏振,可以得到10 ^ 5的灵敏度灵敏度,从而允许收集几个基于GaAs的外延器件的NMR光谱。先前的工作人员将这些光谱视作在诱导光学响应所需的rf功率下进行了功率展宽,或者由于光学检测过程中存在光载流子而失真。 Weitekamp udgroup的一项创新是对时间序列进行排序,并分别优化光泵浦,NMR演化和非常规检测的周期。尽管原则上时间排序允许收集多脉冲高分辨率 udNMR光谱,但是当应用于半导体异质结时,它似乎是不够的。 ud在常规NMR中,可以在单个 udpulse之后收集整个偶极子允许的光谱。但是,在按时间顺序排列的光学NMR中,必须通过重复增加演化时间来逐点建立所需的干涉图。尽管很敏感,但此实验耗时且对漂移不敏感。已经开发了一种新的光学检测方案,该方案消除了这些问题,并允许将NMR光谱以光学方式收集到真实的耕till中。在该实验中,在信号场的进动过程中引入了圆极化非参考核超精细场。观察到的发光偏振对场的瞬时矢量和敏感,从而产生拉莫尔 udbeats。通过使用连续照射或脉冲自旋锁使参考磁化处于平衡状态,在拉莫尔拍频处的发光偏振振动能够仅记录信号核的频谱。 udA光谱仪已构建用于实现NMR的时间序列和Larmer-beat udoptical检测。为了以与2K光学检测兼容的方式进行旋转研究,已将可变角度的亥姆霍兹线圈添加到设备中,以便可以改变静态磁场的方向。初步旋转研究的结果使AlGaAs / GaAs异质结中最快速极化的位点上存在的电场具有令人惊讶的低上限 ud。这可以用模型来理解,其中这些位点是其中内置界面电场已经减弱。

著录项

  • 作者

    Marohn John Aaron;

  • 作者单位
  • 年度 1996
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号