首页> 外文OA文献 >Understanding Micro- and Macro-Mechanics of Soil Liquefaction: A Necessary Step for Field-Scale Assessment
【2h】

Understanding Micro- and Macro-Mechanics of Soil Liquefaction: A Necessary Step for Field-Scale Assessment

机译:理解土壤液化的微观和宏观力学:田间尺度评估的必要步骤

摘要

Liquefaction is a devastating instability associated with saturated, loose, and cohesionless soils. It poses a significant risk to distributed infrastructure systems that are vital for the security, economy, safety, health, and welfare of societies. In order to make our cities resilient to the effects of liquefaction, it is important to be able to identify areas that are most susceptible. Some of the prevalent methodologies employed to identify susceptible areas include conventional slope stability analysis and the use of so-called liquefaction charts. However, these methodologies have some limitations, which motivate our research objectives. In this dissertation, we investigate the mechanics of origin of liquefaction in a laboratory test using grain-scale simulations, which helps (i) understand why certain soils liquefy under certain conditions, and (ii) identify a necessary precursor for onset of flow liquefaction. Furthermore, we investigate the mechanics of liquefaction charts using a continuum plasticity model; this can help in modeling the surface hazards of liquefaction following an earthquake. Finally, we also investigate the microscopic definition of soil shear wave velocity, a soil property that is used as an index to quantify liquefaction resistance of soil. We show that anisotropy in fabric, or grain arrangement can be correlated with anisotropy in shear wave velocity. This has the potential to quantify the effects of sample disturbance when a soil specimen is extracted from the field. In conclusion, by developing a more fundamental understanding of soil liquefaction, this dissertation takes necessary steps for a more physical assessment of liquefaction susceptibility at the field-scale.
机译:液化是与饱和,疏松和无粘性的土壤相关的破坏性不稳定性。它给分布式基础设施系统带来了巨大风险,而分布式基础设施系统对于社会的安全,经济,安全,健康和福祉至关重要。为了使我们的城市能够抵御液化的影响,重要的是能够确定最易受影响的地区。用于识别易受影响区域的一些流行方法包括常规的边坡稳定性分析和所谓的液化图的使用。但是,这些方法有一些局限性,这会激发我们的研究目标。在本文中,我们使用粒度模拟在实验室测试中研究了液化的起源机理,这有助于(i)理解为什么某些土壤在特定条件下会液化,以及(ii)识别出液化开始的必要先兆。此外,我们使用连续性可塑性模型研究液化图的力学。这有助于建模地震后液化的表面危害。最后,我们还研究了土壤剪切波速度的微观定义,土壤剪切波速度是一种用来量化土壤液化阻力的指标。我们表明,织物中的各向异性或晶粒排列可以与剪切波速度中的各向异性相关。当从土壤中提取土壤样本时,这有可能量化样本干扰的影响。总之,通过对土壤液化有了更基本的了解,本论文采取了必要的步骤,以便在田间范围内对液化敏感性进行更实际的评估。

著录项

  • 作者

    Mital Utkarsh;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号