首页> 外文OA文献 >Self-learning voxel-based multi-camera occlusion maps for 3D reconstruction
【2h】

Self-learning voxel-based multi-camera occlusion maps for 3D reconstruction

机译:基于自学习体素的多相机遮挡贴图用于3D重建

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The quality of a shape-from-silhouettes 3D reconstruction technique strongly depends on the completeness of the silhouettes from each of the cameras. Static occlusion, due to e.g. furniture, makes reconstruction difficult, as we assume no prior knowledge concerning shape and size of occluding objects in the scene. In this paper we present a self-learning algorithm that is able to build an occlusion map for each camera from a voxel perspective. This information is then used to determine which cameras need to be evaluated when reconstructing the 3D model at every voxel in the scene. We show promising results in a multi-camera setup with seven cameras where the object is significantly better reconstructed compared to the state of the art methods, despite the occluding object in the center of the room.
机译:轮廓形状3D重建技术的质量很大程度上取决于每个摄像机的轮廓的完整性。静态遮挡,例如由于家具使重建变得困难,因为我们假设没有关于场景中物体的形状和大小的先验知识。在本文中,我们提出了一种自学习算法,该算法能够从体素的角度为每个摄像机建立遮挡图。然后,此信息用于确定在场景中每个体素上重建3D模型时需要评估哪些相机。我们在具有七个摄像头的多摄像头设置中显示出令人鼓舞的结果,尽管将对象遮挡在房间中央,但与现有技术相比,该对象的重建效果要好得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号