首页> 外文OA文献 >In-network quality optimization for adaptive video streaming services
【2h】

In-network quality optimization for adaptive video streaming services

机译:自适应视频流服务的网内质量优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

HTTP adaptive streaming (HAS) services allow the quality of streaming video to be automatically adapted by the client application in face of network and device dynamics. Due to their advantages compared to traditional techniques, HAS-based protocols are widely used for over-the-top (OTT) video streaming. However, they are yet to be adopted in managed environments, such as ISP networks. A major obstacle is the purely client-driven design of current HAS approaches, which leads to excessive quality oscillations, suboptimal behavior, and the inability to enforce management policies. Moreover, the provider has no control over the quality that is provided, which is essential when offering a managed service. This article tackles these challenges and facilitates the adoption of HAS in managed networks. Specifically, several centralized and distributed algorithms and heuristics are proposed that allow nodes inside the network to steer the HAS client's quality selection process. The algorithms are able to enforce management policies by limiting the set of available qualities for specific clients. Additionally, simulation results show that by coordinating the quality selection process across multiple clients, the proposed algorithms significantly reduce quality oscillations by a factor of five and increase the average delivered video quality by at least 14%.
机译:HTTP自适应流(HAS)服务允许面对网络和设备动态变化的客户端应用程序自动调整流视频的质量。由于其与传统技术相比的优势,基于HAS的协议被广泛用于空中(OTT)视频流。但是,它们尚未在托管环境(例如ISP网络)中采用。一个主要的障碍是当前HAS方法的纯粹由客户驱动的设计,这会导致过度的质量波动,行为欠佳以及无法执行管理策略。此外,提供者无法控制所提供的质量,这在提供托管服务时至关重要。本文解决了这些挑战,并促进了HAS在托管网络中的采用。具体而言,提出了几种集中式和分布式算法和启发式方法,它们允许网络内的节点控制HAS客户端的质量选择过程。这些算法能够通过限制特定客户端的可用质量集来实施管理策略。此外,仿真结果表明,通过在多个客户端之间协调质量选择过程,所提出的算法可将质量波动显着降低五倍,并将平均交付的视频质量提高至少14%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号