首页> 外文OA文献 >Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation
【2h】

Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation

机译:利用硅纳米光子光谱转换弥合中红外到电信的差距

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Extending beyond traditional telecom-band applications to optical interconnects(1), the silicon nanophotonic integrated circuit platform also has notable advantages for use in high-performance mid-infrared optical systems operating in the 2-8 mu m spectral range(2,3). Such systems could find applications in industrial and environmental monitoring(4), threat detection(5), medical diagnostics(6) and free-space communication(7). Nevertheless, the advancement of chip-scale systems is impeded by the narrow-bandgap semiconductors traditionally used to detect mid-infrared photons. The cryogenic or multistage thermo-electric cooling required to suppress dark-current noise(8), which is exponentially dependent on E-g/kT, can restrict the development of compact, low-power integrated mid-infrared systems. However, if the mid-infrared signals were spectrally translated to shorter wavelengths, wide-bandgap photodetectors could be used to eliminate prohibitive cooling requirements. Furthermore, such detectors typically have larger detectivity and bandwidth than their mid-infrared counterparts(8). Here, we use efficient four-wave mixing in silicon nanophotonic wires(9-12) to facilitate spectral translation of a signal at 2,440 nm to the telecom band at 1,620 nm, across a span of 62 THz. Furthermore, a simultaneous parametric translation gain of 19 dB can significantly boost sensitivity to weak mid-infrared signals.
机译:硅纳米光子集成电路平台已从传统的电信频段应用扩展到光学互连(1),还具有显着的优势,可用于在2-8微米光谱范围内运行的高性能中红外光学系统(2,3)。 。这样的系统可以在工业和环境监测(4),威胁检测(5),医疗诊断(6)和自由空间通信(7)中找到应用。然而,芯片级系统的发展受到传统上用于检测中红外光子的窄带隙半导体的阻碍。抑制暗电流噪声所需的低温或多级热电冷却(8)指数依赖于E-g / kT,这可能会限制紧凑型,低功率集成中红外系统的发展。但是,如果将中红外信号光谱转换为较短的波长,则可以使用宽带隙光电探测器来消除过高的散热要求。此外,这种探测器通常比中红外探测器具有更大的探测能力和带宽(8)。在这里,我们在硅纳米光子线(9-12)中使用有效的四波混频,以促进在62 THz范围内将2,440 nm的信号频谱转换为1,620 nm的电信频带。此外,同时的19 dB参数转换增益可以显着提高对弱中红外信号的灵敏度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号