首页> 外文OA文献 >High resolution DNA copy number analysis of constitutional chromosomal aberrations in human genomic disorders
【2h】

High resolution DNA copy number analysis of constitutional chromosomal aberrations in human genomic disorders

机译:高分辨率DNa拷贝数分析人类基因组疾病中的组成染色体畸变

摘要

About one to three percent of the human population is aflicted by mild to severe mental retardation, often in association with congenital abnormalities (MR/CA). These abnormalities in normal human morphogenesis may express themselves as subtle dysmorphic signs not causing any harm or present as severe disabling and life-threatening malformations such as congenital heart defects. It is well established that constitutional chromosomal aberrations are an important cause for MR/CA. The screening for such chromosomal rearrangements is done by widely used routine analysis of banded metaphase chromosomes (karyotyping). Given the limited resolution of such analyses (5-10 Mb), it was anticipated that a significant number of submicroscopic deletions or duplications (DNA copy number variations, CNV) were overlooked in patients with idiopathic mental retardation with or without congenital anomalies. This thesis represents one of the _rst exhaustive studies of this patient group using a new and more sensitive method for detection of CNVs. This technique, termed array comparative genomic hybridization (array CGH), allows the genome wide screening for submicroscopic aberrations in one single experiment. Array CGH uses reporter DNA molecules more or less evenly spread throughout the entire genome which are spotted or synthesized in an array on a glass slide. Each reporter is used to interrogate the DNA copy number of a specific genomic region through the competitive hybridization of differentially fluorescent labeled patient and control DNA. Together with the tedious optimalization of the technique, also a web based open source (MySQL) database platform was developed for the analysis and visualization of large amount of array CGH data (medgen.ugent.be/arrayCGHbase) (paper 6). A total of 140 carefully clinically selected patients with mental retardation and/or congenital abnormalities were analyzed for hidden chromosomal aberrations in a collaborative effort with the Center for Medical Genetics Leuven (KUL). This initial study together with a review of other published investigations, allowed for the first time to establish a reliable figure of the number of submicroscopic CNVs in this patient population. When excluding patients with subtelomeric imbalances which could be identified through FISH or MLPA analyses, array CGH still allowed to detect CNVs in an additional ~8% of patients (paper 2). A major challenge resulting from this new flow of information is the search and description of new microdeletion/microduplication syndromes. Although most CNVs seemed to be scattered across the entire genome we were able to describe a new microdeletion syndrome characterized by osteopoikilosis, mental retardation and short stature. This observation was facilitated through the identification of LEMD3 as the causal gene for osteopoikilosis, Buschke-Ollendorff syndrome (BOS) and melorheostosis in the 12q14.3 deleted interval and subsequent, the finding of two additional patients with a 12q14.3 microdeletion (paper 3). The present work also illustrates the possible contribution of array CGH in the delineation of the critical region for recurrent deletion syndromes. In this study we identified a small interstitial deletion on chromosome 18q12.3 in a patient with clinical features of the del(18)(q12.1q21.1) syndrome. We were able to delineate the critical region for this syndrome to an interval of 1.8 Mb, enabling hereby the determination of the crucial genes for this microdeletion syndrome (paper 4). This thesis also further illustrates the power of combined flow cytometry and array CGH for rapid identification of translocation breakpoints. Using this approach we were able to identify OPHN1 as the causal gene for the observed mental retardation and overgrowth in a girl with an apparent balanced t(X;9) translocation (paper 5). In conclusion, the presented work clearly illustrates several important applications of array CGH in the field of clinical cytogenetics. The use of this new performant methodology will greatly improve the diagnostic yield in patients with unexplained mental retardation, provide more insights into genotype-phenotype correlations and ultimately lead to the identification of the causal genes. Functional studies of these gene products will enhance our understanding of the genetic regulation in normal human morphogenesis, embryogenesis and brain functioning. Finally, it is my believe that implementation of array CGH will represent a major and perhaps last wave of innovation in cytogenetics, as the latter may become largely redundant. Ultimately and perhaps earlier than we can anticipate, sequencing of the whole genome of a patient may eventually emerge as the method of choice.
机译:约有1-3%的人口患有轻度至重度智力低下,通常与先天性异常(MR / CA)有关。正常人形态发生中的这些异常可能表现为轻微的畸形体征,不会引起任何伤害,或者表现为严重的致残性和危及生命的畸形,例如先天性心脏缺陷。众所周知,体质染色体畸变是MR / CA的重要原因。通过广泛使用的带状中期染色体常规分析(核型分析)来进行此类染色体重排的筛选。鉴于此类分析的分辨率有限(5-10 Mb),可以预见在患有特发性智力低下伴或不伴有先天性异常的患者中,将忽略大量亚显微缺失或重复(DNA拷贝数变异,CNV)。本论文代表了使用新的更灵敏的CNV检测方法对该患者群进行的首次详尽研究。这项技术称为阵列比较基因组杂交(阵列CGH),可在一个实验中对亚显微像差进行全基因组筛选。阵列CGH使用报道分子DNA分子或多或少均匀地分布在整个基因组中,将其点样或合成在载玻片上。通过差异荧光标记的患者和对照DNA的竞争性杂交,每个报告基因都可用于询问特定基因组区域的DNA拷贝数。与该技术的繁琐优化一起,还开发了一个基于Web的开源(MySQL)数据库平台,用于分析和可视化大量阵列CGH数据(medgen.ugent.be/arrayCGHbase)(论文6)。在鲁汶医学遗传学中心(CUL)的共同努力下,对总共140名经过临床精心挑选的患有智力低下和/或先天性异常的患者进行了隐性染色体畸变分析。这项初步研究与其他已发表研究的回顾,首次使该患者人群中亚显微CNV的数量有了可靠的数字。当排除可以通过FISH或MLPA分析确定的亚端粒不平衡患者时,阵列CGH仍可在约8%的患者中检测CNV(论文2)。这种新的信息流带来的主要挑战是对新的微缺失/微复制综合征的搜索和描述。尽管大多数CNV似乎散布在整个基因组中,但我们能够描述出一种以骨质疏松症,智力低下和身材矮小为特征的新型微缺失综合症。通过将LEMD3鉴定为12q14.3缺失间隔中骨质疏松症,Buschke-Ollendorff综合征(BOS)和结肠造血的病因基因,并随后发现了另外两名具有12q14.3微缺失的患者,促进了这一观察结果(论文3 )。本工作还说明了阵列CGH在描绘复发缺失综合征的关键区域时可能做出的贡献。在这项研究中,我们确定了具有del(18)(q12.1q21.1)综合征临床特征的患者,染色体18q12.3上存在小间隙缺失。我们能够将这种综合征的关键区域划分为1.8 Mb,从而确定了该微缺失综合征的关键基因(论文4)。本论文还进一步说明了结合流式细胞仪和阵列CGH进行快速鉴定易位断点的能力。使用这种方法,我们能够将OPHN1识别为t(X; 9)易位平衡的女孩中观察到的智力低下和过度生长的原因基因(论文5)。总之,目前的工作清楚地说明了阵列CGH在临床细胞遗传学领域的几个重要应用。这种新的性能方法的使用将大大提高无法解释的智力低下患者的诊断率,为基因型与表型的相关性提供更多的见识,并最终导致因果基因的鉴定。这些基因产物的功能研究将增进我们对正常人类形态发生,胚胎发生和脑功能的遗传调控的理解。最后,我相信,阵列CGH的实施将代表细胞遗传学的重大创新浪潮,也许是最后一波创新浪潮,因为后者可能在很大程度上变得多余。最终,也许比我们预期的更早,对患者整个基因组的测序可能最终成为选择的方法。

著录项

  • 作者

    Menten Björn;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号