首页> 外文OA文献 >Succeeding metadata based annotation scheme and visual tips for the automatic assessment of video aesthetic quality in car commercials
【2h】

Succeeding metadata based annotation scheme and visual tips for the automatic assessment of video aesthetic quality in car commercials

机译:成功的基于元数据的注释方案和视觉提示,用于自动评估汽车广告中的视频审美质量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we present a computational model capable to predict the viewer perception of car advertisements videos by using a set of low-level video descriptors. Our research goal relies on the hypothesis that these descriptors could reflect the aesthetic value of the videos and, in turn, their viewers' perception. To that effect, and as a novel approach to this problem, we automatically annotate our video corpus, downloaded from YouTube, by applying an unsupervised clustering algorithm to the retrieved metadata linked to the viewers' assessments of the videos. In this regard, a regular k-means algorithm is applied as partitioning method with k ranging from 2 to 5 clusters, modeling different satisfaction levels or classes. On the other hand, available metadata is categorized into two different types based on the profile of the viewers of the videos: metadata based on explicit and implicit opinion respectively. These two types of metadata are first individually tested and then combined together resulting in three different models or strategies that are thoroughly analyzed. Typical feature selection techniques are used over the implemented video descriptors as a pre-processing step in the classification of viewer perception, where several different classifiers have been considered as part of the experimental setup. Evaluation results show that the proposed video descriptors are clearly indicative of the subjective perception of viewers regardless of the implemented strategy and the number of classes considered. The strategy based on explicit opinion metadata clearly outperforms the implicit one in terms of classification accuracy. Finally, the combined approach slightly improves the explicit, achieving a top accuracy of 72.18% when distinguishing between 2 classes, and suggesting that better classification results could be obtained by using suitable metrics to model perception derived from all available metadata.
机译:在本文中,我们提出了一种计算模型,该模型能够通过使用一组低级视频描述符来预测观众对汽车广告视频的感知。我们的研究目标基于以下假设:这些描述符可以反映视频的美学价值,进而反映出观众的感知。为此,作为解决此问题的一种新颖方法,我们通过对链接到观看者的视频评估的检索到的元数据应用无监督的聚类算法,自动注释从YouTube下载的视频语料库。在这方面,将常规k均值算法用作k范围为2到5个簇的分区方法,对不同的满意度或类别进行建模。另一方面,根据视频观众的个人资料,可用的元数据分为两种不同的类型:分别基于显式和隐式观点的元数据。首先分别对这两种类型的元数据进行测试,然后将它们组合在一起,从而产生了三种经过全面分析的不同模型或策略。在观看者感知的分类中,将典型的特征选择技术用于已实现的视频描述符中,作为预处理步骤,其中几种不同的分类器已被视为实验设置的一部分。评估结果表明,无论实施的策略和所考虑的课程数量如何,建议的视频描述符都清楚地表明了观众的主观感受。就分类准确性而言,基于显式意见元数据的策略明显优于隐式策略。最后,组合方法略微提高了显式性,在区分两个类别时达到了72.18%的最高准确度,并表明可以通过使用适当的度量标准来建模从所有可用元数据中获得的感知来获得更好的分类结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号