首页> 外文OA文献 >Doppler refectometry in the TJ-II stellarator: design of an optimized Doppler reflectometer and its application to turbulence and radial electric field studies
【2h】

Doppler refectometry in the TJ-II stellarator: design of an optimized Doppler reflectometer and its application to turbulence and radial electric field studies

机译:TJ-II仿星器中的多普勒反射测量:优化多普勒反射仪的设计及其在湍流和径向电场研究中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For several decades magnetic confinement of high-temperature plasmas has been investigated with the objective of building a burning fusion reactor. One of the mainobstacles in reaching this goal is the energy and particle losses caused by radial transport processes in the plasma. Therefore, the identification and reduction of this radial transport is a demanding challenge faced by theoretical and experimental physicists.The transport processes in toroidal plasmas can be grouped into two categories, i.e.neoclassical and turbulent transport. Neoclassical theory is an extension of classical theory to include the toroidal geometry of magnetic confinement fusion experiments, which results in new particle drifts and magnetic field mirror effects, which trap particles and lead to an increased collision frequency. Neoclassical transport is an ubiquitous process, since it depends on the existence of background gradients in the plasma and Coulomb collisions between particles.The second type of transport, turbulent or anomalous transport, is fundamentallydifferent from neoclassical transport due to the fact that the described particle losses are caused by microinstabilities. These microinstabilities occur irregularly in the plasma, hence turbulent transport is an intermittent process rather than a continuous one. The particle and energy losses observed in toroidal fusion plasmas are believed to be mainly caused by turbulent transport, making it one of the dominant fields of investigation ofthe fusion community in the last few decades.Plasma turbulence can basically be described as the incoherent motion of the plasmawhich arises from small-scale fluctuations in parameters such as plasma density, tem-perature, potential, and the magnetic field. Gradients in the plasma parameters arethe driving forces of the turbulence, which leads to the conclusion that the better theplasma confinement (stronger gradients), the higher the turbulence level. However, thisis not completely true: the discovery of the H-mode confinement regime in 1982 showedthat the plasma can spontaneously self-organize and enter a mode of improved confinement (L-H transition), characterized by a steepening of plasma gradients accompanied by a significant reduction of the level of fluctuations and turbulent transport.This discovery led to an immense effort, from both the theoretical and the exper-imental sides, in trying to understand the L-H transition and the reduced turbulencelevel in the H-mode confinement regime. After more than a quarter century of active research, the prevailing paradigm to explain the turbulence level reduction consists inturbulence suppression via sheared flows. However, although these flows are observedin H-mode plasmas, their generation mechanisms are still unknown. Several candidates involving the edge pressure gradient or turbulence driven mean and oscillating flows exist, but elucidation is still pending.
机译:几十年来,一直在研究高温等离子体的磁约束,目的是建造一个燃烧的聚变反应堆。达到这一目标的主要障碍之一是等离子体中径向传输过程引起的能量和颗粒损失。因此,确定和减少这种径向传输是理论和实验物理学家面临的严峻挑战。环形等离子体中的传输过程可以分为两类,即新古典传输和湍流传输。新古典理论是对经典理论的扩展,包括磁约束聚变实验的环形几何结构,这导致了新的粒子漂移和磁场镜效应,从而捕获了粒子并导致增加了碰撞频率。新古典传输是一个普遍存在的过程,因为它取决于等离子体中背景梯度的存在和粒子之间的库仑碰撞。第二种传输方式(湍流或反常传输)与新古典传输在本质上有所不同,这是由于上述粒子损失是由微不稳定性引起的。这些微不稳定性在等离子体中不规则地发生,因此湍流传输是一个间歇过程,而不是连续过程。据信在环形聚变等离子体中观察到的粒子和能量损失主要是由湍流传输引起的,使其成为近几十年来聚变界研究的主要领域之一。等离子湍流基本上可以描述为等离子体的非相干运动。等离子体是由诸如等离子体密度,温度,电势和磁场等参数的小范围波动引起的。等离子体参数中的梯度是湍流的驱动力,这得出结论:等离子约束越好(梯度越强),湍流水平越高。但是,这并非完全正确:1982年H模式限制机制的发现表明,血浆可以自发自组织并进入改善的限制模式(LH跃迁),其特征是血浆梯度变陡并显着降低这一发现导致了从理论和实验两方面的巨大努力,试图了解LH过渡和H型限制条件下减小的湍流水平。经过四分之一世纪的积极研究,解释湍流水平降低的主要范式包括通过剪切流抑制湍流。但是,尽管在H型等离子体中观察到了这些流动,但是它们的产生机理仍然未知。存在几种涉及边缘压力梯度或湍流驱动的均值和振荡流的候选方法,但仍未阐明。

著录项

  • 作者

    Happel Tim;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号