首页> 外文OA文献 >Nonparametric checks for count data models: an application to demand for health care in Spain
【2h】

Nonparametric checks for count data models: an application to demand for health care in Spain

机译:计数数据模型的非参数检查:西班牙医疗保健需求的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents model specification checking procedures for count data regression models which are consistent in the direction of nonparametric alternatives. The discussion is motivated in the context of a model of demand for health care in Spain. The parameters of the regression model are estimated by maximum likelihood based on Poisson and Negative Binomial specifications as well as by ordinary least squares and semiparametric generalized least squares. However, our interest is not only centered on the estimation ofthe regression parameters, but also the conditional probabilities of counts. Therefore, the specification of the conditional distribution function of counts is the main focus of attention. A useful preliminary diagnosis tool consists of comparing the conditional probabilities estimates by nonparametric regression and by maximum likelihood methods based on alternative models. We present formal specification procedures based on new developed testing methods for regression model checking. The test statistics are based on marked empirical processes which are not distribution free, but their critical values are well approximated by bootstrap. Such tests are valid for testing the functional form of the conditional mean and conditional probabilities resulting from alternative distributional specifications. In our health care demand model, the linear exponential regression model with a Negative Binomial seems to be appropiate for this data set.
机译:本文介绍了用于计数数据回归模型的模型规范检查过程,该过程在非参数替代方案的方向上是一致的。讨论是基于西班牙对医疗保健需求的模型进行的。回归模型的参数通过基于Poisson和负二项式规范的最大似然估计,以及通过普通最小二乘法和半参数广义最小二乘法进行估计。但是,我们的兴趣不仅集中在回归参数的估计上,而且还包括计数的条件概率。因此,计数的条件分布函数的规范是关注的主要焦点。一个有用的初步诊断工具包括通过非参数回归和基于替代模型的最大似然方法比较条件概率估计值。我们提出了基于新开发的用于回归模型检查的测试方法的正式规范程序。测试统计数据基于标记的经验过程,这些过程并非没有分布,但是其临界值可以通过自举很好地近似。这样的测试对于测试条件均值和条件概率的功能形式是有效的,这些条件均值和条件概率是由其他分布规范得出的。在我们的医疗保健需求模型中,具有负二项式的线性指数回归模型似乎适用于此数据集。

著录项

  • 作者单位
  • 年度 1997
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号