首页> 外文OA文献 >Physical simulation of investment casting of Mar-M247 Ni-based superalloy
【2h】

Physical simulation of investment casting of Mar-M247 Ni-based superalloy

机译:mar-m247镍基高温合金熔模铸造物理模拟

摘要

Mar-M247 is a Ni-based superalloy developed for high temperatures applications, such as advanced jet engines, where high strength and excellent creep resistance are required. Investment casting process has been widely used for fabrication of complex shape parts and is only commercially technique for fabrication of nozzle guide vanes (NGVs) known as a one of the most important structural parts of engines and gas turbines. Nevertheless, the development of NGVs is hindered by the complexity of investment casting process of complex shape parts. Therefore, there is high demand to find and apply a method to overcome those drawbacks. Physical simulation of investment can be a method to tackle these shortcomings. Physical simulation of investment casting was developed to mimic solidification of alloy during investment casting of new generation NGVs from Mar-M247 by high capability physical simulator machines. This tool, consisting of thermal model and melting/solidification experiments, is the exact reproduction of the thermal and mechanical history of full scale investment casting process in the laboratory scale. Initially, the Pro-Cast based thermal model was developed, validated and applied to predict local cooling rates at defined points of NGVs. Then, the outcomes of the modeling were used as input parameters for the melting/solidification experiments in the thermo-mechanical simulator Gleeble 3800. Finally, the validation of physical simulation was carried out by comparison of microstructural and hardness properties of Gleeble specimens and as-cast NGV. In addition, in order to get a deeper insight into the correlation between Mar-M247 characteristics with casting/solidification conditions. Complementary study on SDAS showed that temperature gradient should be taken into account as an effective factor influencing the SDAS. Furthermore, the skin formation and its grain texture were studied by utilizing the combination of electron back skater diffraction (EBSD) and nanoindentation method.
机译:Mar-M247是一种镍基高温合金,专为高温应用而开发,例如要求高强度和出色抗蠕变性的先进喷气发动机。熔模铸造工艺已广泛用于制造复杂形状的零件,并且仅是用于制造喷嘴导流叶片(NGV)的商业技术,喷嘴导流叶片是发动机和燃气轮机最重要的结构部件之一。尽管如此,由于复杂形状零件的熔模铸造工艺的复杂性,阻碍了NGV的发展。因此,迫切需要找到并应用克服这些缺点的方法。投资的物理模拟可以解决这些缺点。开发熔模铸造的物理模拟是为了模拟Mar-M247在新一代NGV熔模铸造过程中通过高性能物理模拟机模拟合金的凝固过程。该工具由热模型和熔融/凝固实验组成,可以精确再现实验室规模的全面熔模铸造工艺的热和机械历史。最初,基于Pro-Cast的热模型被开发,验证并应用于预测NGV定义点的局部冷却速率。然后,将模型的结果用作热力学模拟器Gleeble 3800中的熔化/凝固实验的输入参数。最后,通过比较Gleeble试样的显微组织和硬度特性以及以下方法对物理模拟进行验证:投NGV。另外,为了更深入地了解Mar-M247特性与铸造/凝固条件之间的关系。对SDAS的补充研究表明,应将温度梯度作为影响SDAS的有效因素。此外,通过结合电子反滑板衍射(EBSD)和纳米压痕方法研究了皮肤的形成及其纹理。

著录项

  • 作者

    Rahimian Mehdi;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号