首页> 外文OA文献 >Monte Carlo study of the effects of system geometry and antiscatter grids on cone-beam CT scatter distributions
【2h】

Monte Carlo study of the effects of system geometry and antiscatter grids on cone-beam CT scatter distributions

机译:蒙特卡罗研究系统几何和反散射网格对锥束CT散射分布的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Purpose: The proliferation of cone-beam CT (CBCT) has created interest in performance optimization,with x-ray scatter identifie among the main limitations to image quality. CBCT often contends with elevated scatter, but the wide variety of imaging geometry in different CBCT configuration suggests that not all configuration are affected to the same extent. Graphics processing unit (GPU) accelerated Monte Carlo (MC) simulations are employed over a range of imaging geometries to elucidate the factors governing scatter characteristics, effica y of antiscatter grids, guide system design, and augment development of scatter correction.Methods: A MC x-ray simulator implemented on GPU was accelerated by inclusion of variance reduction techniques (interaction splitting, forced scattering, and forced detection) and extended to include x-ray spectra and analytical models of antiscatter grids and flat-pane detectors. The simulator was applied to small animal (SA), musculoskeletal (MSK) extremity, otolaryngology (Head), breast, interventional C-arm, and on-board (kilovoltage) linear accelerator (Linac) imaging, with an axis-todetector distance (ADD) of 5, 12, 22, 32, 60, and 50 cm, respectively. Each configuratio was modeled with and without an antiscatter grid and with (i) an elliptical cylinder varying 70–280 mm in major axis; and (ii) digital murine and anthropomorphic models. The effects of scatter were evaluated in terms of the angular distribution of scatter incident upon the detector, scatter-to-primary ratio (SPR), artifact magnitude, contrast, contrast-to-noise ratio (CNR), and visual assessment.Results: Variance reduction yielded improvements in MC simulation efficien y ranging from ∼17-fold (for SA CBCT) to ∼35-fold (for Head and C-arm), with the most significan acceleration due to interaction splitting (∼6 to ∼10-fold increase in efficien y). The benefi of a more extended geometry was evident by virtue of a larger air gap—e.g., for a 16 cm diameter object, the SPR reduced from 1.5 for ADD = 12 cm (MSK geometry) to 1.1 for ADD = 22 cm (Head) and to 0.5 for ADD = 60 cm (C-arm). Grid efficien y was higher for configuration with shorter air gap due to a broader angular distribution of scattered photons—e.g., scatter rejection factor ∼0.8 for MSK geometry versus ∼0.65 for C-arm. Grids reduced cupping for all configuration but had limited improvement on scatterinduced streaks and resulted in a loss of CNR for the SA, Breast, and C-arm. Relative contribution of forward-directed scatter increased with a grid (e.g., Rayleigh scatter fraction increasing from ∼0.15 without a grid to ∼0.25 with a grid for the MSK configuration) resulting in scatter distributions with greater spatial variation (the form of which depended on grid orientation).Conclusions: A fast MC simulator combining GPU acceleration with variance reduction provided a systematic examination of a range of CBCT configuration in relation to scatter, highlighting the magnitude and spatial uniformity of individual scatter components, illustrating tradeoffs in CNR and artifacts and identifying the system geometries for which grids are more beneficia (e.g., MSK) from those in which an extended geometry is the better defense (e.g., C-arm head imaging). Compact geometries with an antiscatter grid challenge assumptions of slowly varying scatter distributions due to increased contribution of Rayleigh scatter.
机译:目的:锥形束CT(CBCT)的发展引起了人们对性能优化的兴趣,其中X射线散射被识别为图像质量的主要限制因素。 CBCT通常会与散射升高竞争,但是在不同的CBCT配置中,成像几何形状的多样性表明,并非所有配置都受到相同程度的影响。图形处理单元(GPU)加速的蒙特卡洛(MC)仿真用于一系列成像几何图形,以阐明控制散射特征,防散射网格效率,指导系统设计以及增强散射校正开发的因素。通过包括方差减少技术(交互拆分,强制散射和强制检测),加速了在GPU上实现的x射线模拟器,并将其扩展到包括x射线光谱以及防散射网格和平板探测器的分析模型。该模拟器已应用于小型动物(SA),肌肉骨骼(MSK)肢体,耳鼻喉科(头部),乳房,介入性C臂和机载(千伏)线性加速器(Linac)成像,其轴到检测器的距离为( 5、12、22、32、60和50厘米)。每个配置都在有和没有反散射网格的情况下进行建模,并且(i)椭圆圆柱的长轴变化为70-280 mm; (ii)数字鼠和拟人模型。根据入射到检测器上的散射的角度分布,散射与主要比例(SPR),伪影幅值,对比度,对比度与噪声比(CNR)和视觉评估来评估散射的影响。方差的减少使MC模拟效率提高了约17倍(对于SA CBCT)到约35倍(对于Head和C臂),而最大的加速度是由于交互作用分解(约6到约10-倍效率提高)。通过更大的气隙可以明显看出几何形状更有利的好处-例如,对于直径为16 cm的对象,SPR从ADD = 12 cm(MSK几何形状)的1.5降低到ADD = 22 cm(头部)的1.1对于ADD = 60厘米(C型臂),则为0.5。对于具有较短气隙的配置,由于散射光子的角度分布较宽,网格效率较高,例如,MSK几何结构的散射抑制系数约为0.8,而C臂的散射抑制系数约为0.65。网格减少了所有配置的拔罐,但对散射引起的条纹的改善有限,并导致了SA,乳房和C型臂的CNR损失。前向散射的相对贡献随着网格的增加而增加(例如,瑞利散射分数从无网格的〜0.15增加到MSK配置的网格的〜0.25),导致散射分布具有更大的空间变化(其形式取决于结论:结合了GPU加速和方差减少的快速MC模拟器,系统地检查了与散布有关的CBCT配置范围,突出显示了各个散布分量的大小和空间均匀性,说明了CNR和伪像的权衡并确定了网格比那些几何形状具有更好的防御性(例如C臂头部成像)更好的系统几何形状(例如MSK)。具有反散射网格的紧凑几何形状挑战了由于瑞利散射贡献增加而导致散射分布缓慢变化的假设。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号