首页> 外文OA文献 >Design of operational amplifiers with feedforward multistage architecture in CMOS low voltage technology for biomedical instrumentation applications
【2h】

Design of operational amplifiers with feedforward multistage architecture in CMOS low voltage technology for biomedical instrumentation applications

机译:用于生物医学仪器应用的CmOs低压技术中具有前馈多级架构的运算放大器的设计

摘要

Magnetic Resonance (MRI) is an imaging technique used to obtain anatomical and structural features of a patient’s body. The creation of a measurable signal is based on the varying water concentration throughout the body. The atoms which participate actively in such event are the hydrogen atoms from water, which create a varying magnetic field in response to a radiofrequency pulse. Such radiofrequency pulse is applied perpendicular to a main magnetic field created by a gradient coil, which is in charge of aligning the magnetic moments of hydrogen atoms. Upon application of the radiofrequency pulse, magnetic moments of hydrogen atoms rotate 90º with respect to the main field, creating a varying magnetic field which can be converted into a current through the use of coils.The detection of such current is achieved through the use of sensors, and constitutes a crucial step for the creation of an image based on the information emanating from the magnetic resonance equipment. Bearing in mind that a 1.5 Tesla MRI contains around 80 sensing components, the key element in MRI is the data acquisition block which forms part of each individual sensor. This data acquisition block contains a sensor, a band pass filter, and a band pass Analog to Digital Converter (ADC). From these three elements, the one in charge of the final resolution so that the digital part can appropriately process each sensor’s information is the ADC. Therefore, the accuracy of the ADC’s performance influences image processing steps to be performed afterwards for the final creation of an image.An Analog to Digital Converter can be built in several ways, either through a subsampling pipeline or band pass Sigma Delta. In both cases, the key elements which influence the resolution of the ADC are the operational amplifiers with which they are built up. Subsampling pipelines make use of operational amplifiers in order to sample the input signal in successive steps, whereas band pass Sigma Delta circuits use them to filter the quantification noise around a specified frequency.The ADC which will be used for the purpose of this work is a band pass Sigma Delta modulator whose bandwidth and center frequency are respectively 1MHz and 140MHz. The main objective of this work is to build a model of a real operational amplifier to be used in the filter of the ADC.
机译:磁共振(MRI)是一种成像技术,用于获取患者身体的解剖结构和结构特征。可测量信号的创建基于整个人体中不断变化的水浓度。积极参与这种事件的原子是水中的氢原子,它们会响应射频脉冲而产生变化的磁场。垂直于由梯度线圈产生的主磁场施加这样的射频脉冲,该梯度线圈负责对准氢原子的磁矩。施加射频脉冲后,氢原子的磁矩相对于主磁场旋转90º,从而产生变化的磁场,该磁场可以通过使用线圈转换为电流。通过使用传感器,并构成了基于磁共振设备发出的信息创建图像的关键步骤。请记住,1.5特斯拉MRI包含约80个传感组件,MRI中的关键元素是数据采集模块,该模块构成每个单独传感器的一部分。该数据采集模块包含一个传感器,一个带通滤波器和一个带通模数转换器(ADC)。从这三个要素中,负责最终分辨率的是ADC,以便数字部分可以适当地处理每个传感器的信息。因此,ADC性能的准确性会影响最终创建图像后要执行的图像处理步骤。模数转换器可以通过子采样管线或带通Sigma Delta以多种方式构建。在这两种情况下,影响ADC分辨率的关键因素都是与它们建立在一起的运算放大器。二次采样流水线使用运算放大器来连续采样输入信号,而带通Sigma Delta电路则使用它们来滤除指定频率附近的量化噪声。用于此工作的ADC是一个带通Sigma Delta调制器,其带宽和中心频率分别为1MHz和140MHz。这项工作的主要目的是建立一个用于ADC滤波器的实际运算放大器模型。

著录项

  • 作者

    Castillo Fabregat Macarena;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号