首页> 外文OA文献 >Robust estimation in linear regression models with fixed effects
【2h】

Robust estimation in linear regression models with fixed effects

机译:具有固定效应的线性回归模型的稳健估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work we extend the procedure proposed by Peña and Yohai (1999) for computing robust regression estimates in linear models with fixed effects. We propose to calculate the principal sensitivity components associated to each cluster and delete the set of possible outliers based on an appropriate robust scale of the residuals. Some advantage of our robust procedure are: (a) it is computationally low demanding, (b) it is able to avoid the swamping effect often present in similar methods, (c) it is appropriate for contamination in the error term (vertical outliers) and possibly masked high leverage points (horizontal outliers). The performance of the robust procedure is investigated through several simulation studies.
机译:在这项工作中,我们扩展了Peña和Yohai(1999)提出的用于在具有固定影响的线性模型中计算鲁棒回归估计的过程。我们建议计算与每个聚类相关的主要敏感度分量,并根据残差的适当鲁棒尺度删除可能的离群值。我们鲁棒的程序的一些优点是:(a)计算量要求低;(b)能够避免类似方法中经常出现的沼泽效应;(c)在误差项(垂直离群值)中适合污染并可能掩盖了高杠杆点(水平异常值)。通过几个模拟研究来研究鲁棒过程的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号