首页> 外文OA文献 >New optoacoustic spectroscopy system to quality and characterize absorbers in turbid media: experimental mesaurements and analysis of gold nanoparticles for biomedical applications
【2h】

New optoacoustic spectroscopy system to quality and characterize absorbers in turbid media: experimental mesaurements and analysis of gold nanoparticles for biomedical applications

机译:新的光声光谱系统,用于质量和表征混浊介质中的吸收剂:用于生物医学应用的金纳米粒子的实验测量和分析

摘要

The limited penetration depth of optical energy in biological media is primarily due to the high level of optical scattering. This optical attenuation places an upper limit on optical, diagnostic, and therapeutic techniques for in in-vivo applications. The optoacoustic technique combines the unique advantages of light and sound, providing high levels of contrast, while maintaining the spatial resolution of acoustic techniques. The importance of colloidal gold solutions, as optical contrast agents in optoacoustic biomedical applications, is to increase the absorption of optical energy in areas where scattering is dominant and has prompted the study presented in this thesis on their characterization and quantification. It has been demonstrated that the acoustic transients generated from the optical irradiation are directly proportional to the wavelength dependent absorbed optical energy. Advantage has been taken of this fact to design two separate optoacoustic schemes. The first has been implemented to quantify the optical absorption, at a single laser wavelength, of spherical gold nanoparticles embedded within a medium that simulates the high scattering nature of soft tissue. The second has been designed to obtain the spectroscopic profile of such gold nanostructures. The results obtained from the optoacoustic analysis are compared to those from a reference measurement scheme, based on collimated optical transmission, which is in parallel and under the same conditions. This comparative analysis has confirmed the interest for the proposed technique of optoacoustics for laser spectroscopy of gold nanoparticles. In this thesis results obtained, for the first time, on the quantification and spectroscopic analysis of gold nanoparticles embedded in a liquid phantom using the optoacoustic technique are presented. The results have been confirmed by the reference measurement scheme and an offline commercial spectrophotometer. To further demonstrate the potential of the optoacoustic technique, information regarding the position and dimensions of the absorbing solutions have been extracted from measurements. The spectroscopic analysis has been carried out in steps of 5 nm over the complete wavelength range from 450 nm to 650 nm for a spherical gold nanoparticle solution and 410 nm to 1000 nm for a gold nanorod solution. This research work has opened up new lines of investigation in the field of monitorization of nanoparticle contrast agents embedded in biological media for optoacoustic diagnostics and biomedical applications.----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
机译:光能在生物介质中的穿透深度有限主要是由于高水平的光散射。这种光衰减对体内应用的光学,诊断和治疗技术设置了上限。光声技术结合了光和声的独特优势,提供了高水平的对比度,同时又保持了声技术的空间分辨率。胶体金溶液作为光声生物医学应用中的光学对比剂的重要性在于增加在散射占主导地位的区域对光能的吸收,并促进了本文中有关其表征和定量的研究。已经证明,由光辐射产生的声瞬变与波长相关的吸收光能成正比。利用这一事实设计了两个独立的光声方案。已经实现了第一种方法,以量化嵌入单个介质中的球形金纳米颗粒在单个激光波长下的光吸收,该介质模拟了软组织的高散射特性。已经设计了第二种以获得这种金纳米结构的光谱轮廓。在平行和相同条件下,基于准直光传输,将从光声分析获得的结果与从参考测量方案获得的结果进行比较。这种比较分析已经证实了对提出的用于金纳米颗粒的激光光谱的光声技术的兴趣。本文首次提出了利用光声技术对包埋在液体幻影中的金纳米颗粒进行定量和光谱分析的结果。该结果已通过参考测量方案和离线商业分光光度计得到确认。为了进一步证明光声技术的潜力,已经从测量中提取了有关吸收溶液的位置和尺寸的信息。对于球形金纳米粒子溶液,在450nm至650nm的整个波长范围内,对于金纳米棒溶液,在410nm至1000nm的整个波长范围内,以5nm的步长进行了光谱分析。这项研究工作为监测嵌入在生物介质中的光声诊断和生物医学应用的纳米粒子造影剂开辟了新的研究领域。 -------------------------------------------------- -------------------------------------------------- -------------------------------------------------- --------------------------------------

著录项

  • 作者

    Cunningham Vincent Brian;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号