首页> 外文OA文献 >Methods to enhance content distribution for very large scale online communities
【2h】

Methods to enhance content distribution for very large scale online communities

机译:增强大规模在线社区内容分发的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Internet has experienced an exponential growth in the last years, and its number of users far from decay keeps on growing. Popular Web 2.0 services such as Facebook, YouTube or Twitter among others sum millions of users and employ vast infrastructures deployed worldwide. The size of these infrastructures is getting huge in order to support such a massive number of users. This increment of the infrastructure size has brought new problems regarding scalability, power consumption, cooling, hardware lifetime, underutilization, investment recovery, etc. Owning this kind of infrastructures is not always affordable nor convenient. This could be a major handicap for starting projects with a humble budget whose success is based on reaching a large audience. However, current technologies might permit to deploy vast infrastructures reducing their cost. We refer to peer-to-peer networks and cloud computing. Peer-to-peer systems permit users to yield their own resources to distributed infrastructures. These systems have demonstrated to be a valuable choice capable of distributing vast amounts of data to large audiences with a minimal starting infrastructure. Nevertheless, aspects such as content availability cannot be controlled in these systems, whereas classic server infrastructures can improve this aspect. In the recent time, the cloud has been revealed as a promising paradigm for hosting horizontally scalable Web systems. The cloud offers elastic capabilities that permit to save costs by adapting the number of resources to the incoming demand. Additionally, the cloud makes accessible a vast amount of resources that may be employed on peak workloads. However, how to determine the amount of resources to use remains a challenge. In this thesis, we describe a hierarchical architecture that combines both: peer-to-peer and elastic server infrastructures in order to enhance content distribution. The peer-topeer infrastructure brings a scalable solution that reduces the workload in the servers, while the server infrastructure assures availability and reduces costs varying its size when necessary. We propose a distributed collaborative caching infrastructure that employs a clusterbased locality-aware self-organizing P2P system. This system, leverages collaborative data classification in order to improve content locality. Our evaluation demonstrates that incrementing data locality permits to improve data search while reducing traffic. We explore the utilization of elastic server infrastructures addressing three issues: system sizing, data grouping and content distribution. We propose novel multi-model techniques for hierarchical workload prediction. These predictions are employed to determine the system size and request distribution policies. Additionally, we propose novel techniques for adaptive control that permit to identify inaccurate models and redefine them. Our evaluation using traces extracted from real systems indicate that the utilization of a hierarchy of multiple models increases prediction accuracy. This hierarchy in conjunction with our adaptive control techniques increments the accuracy during unexpected workload variations. Finally, we demonstrate that locality-aware request distribution policies can take advantage of prediction models to adequate content distribution independently of the system size.
机译:互联网在过去的几年中经历了指数级增长,其用户数量远没有下降,而且还在不断增长。诸如Facebook,YouTube或Twitter之类的流行Web 2.0服务吸引了数百万用户,并使用了遍布全球的庞大基础架构。为了支持如此众多的用户,这些基础架构的规模越来越大。基础架构规模的增加带来了有关可伸缩性,功耗,散热,硬件寿命,未充分利用,投资回收等方面的新问题。拥有这种基础架构并不总是可以负担得起,也不方便。这对于启动预算不高的项目可能是一个重大障碍,而预算的成功是建立在吸引大量受众的基础上的。但是,当前的技术可能允许部署庞大的基础架构,从而降低成本。我们指的是对等网络和云计算。对等系统允许用户将自己的资源提供给分布式基础架构。这些系统已被证明是一个有价值的选择,能够以最少的启动基础结构将大量数据分发给大量的受众。但是,在这些系统中无法控制诸如内容可用性之类的方面,而经典的服务器基础结构可以改善这一方面。在最近的时间里,云已经被证明是托管水平可伸缩Web系统的有希望的范例。云提供了弹性功能,可以通过根据传入需求调整资源数量来节省成本。此外,云使可用于高峰工作负载的大量资源可访问。但是,如何确定要使用的资源量仍然是一个挑战。在本文中,我们描述了一种结合了以下各项的分层体系结构:点对点和弹性服务器基础结构,以增强内容分发。对等基础结构提供了可扩展的解决方案,可减少服务器中的工作量,而服务器基础结构可确保可用性并减少在必要时更改其大小的成本。我们提出了一种分布式协作式缓存基础结构,该基础结构采用了基于集群的本地感知的自组织P2P系统。该系统利用协作数据分类以改善内容的局部性。我们的评估表明,增加数据局部性可以在减少流量的同时改善数据搜索。我们探索弹性服务器基础结构的利用,以解决三个问题:系统大小确定,数据分组和内容分发。我们提出了用于分层工作量预测的新颖的多模型技术。这些预测用于确定系统大小和请求分发策略。此外,我们提出了用于自适应控制的新技术,该技术可识别不准确的模型并重新定义它们。我们使用从真实系统中提取的跟踪数据进行评估,表明利用多个模型的层次结构可以提高预测准确性。这种层次结构与我们的自适应控制技术相结合,可在意外的工作负载变化期间提高准确性。最后,我们证明了本地感知的请求分发策略可以利用预测模型来进行适当的内容分发,而与系统大小无关。

著录项

  • 作者

    Tirado Martín Juan Manuel;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号