首页> 外文OA文献 >Advanced thermal analysis of microelectronics using spreading resistance models
【2h】

Advanced thermal analysis of microelectronics using spreading resistance models

机译:使用扩散电阻模型对微电子进行高级热分析

摘要

Thermal analysis of electronic devices is one of the most important steps for designingudof modern devices. Precise thermal analysis is essential for designing an effective thermaludmanagement system of modern electronic devices such as batteries, LEDs, microelectronics,udICs, circuit boards, semiconductors and heat spreaders. For having a preciseudthermal analysis, the temperature profile and thermal spreading resistance of the deviceudshould be calculated by considering the geometry, property and boundary conditions. Thermaludspreading resistance occurs when heat enters through a portion of a surface and flowsudby conduction. It is the primary source of thermal resistance when heat flows from a tinyudheat source to a thin and wide heat spreader. In this thesis, analytical models for modelingudthe temperature behavior and thermal resistance in some common geometries of microelectronicuddevices such as heat channels and heat tubes are investigated. Different boundaryudconditions for the system are considered. Along the source plane, a combination ofuddiscretely specified heat flux, specified temperatures and adiabatic condition are studied.udAlong the walls of the system, adiabatic or convective cooling boundary conditions areudassumed. Along the sink plane, convective cooling with constant or variable heat transferudcoefficient are considered. Also, the effect of orthotropic properties is discussed. Thisudthesis contains nine chapters. Chapter one is the introduction and shows the concepts ofudthermal spreading resistance besides the originality and importance of the work. Chapterudtwo reviews the literatures on the thermal spreading resistance in the past fifty years with a focus on the recent advances. In chapters three and four, thermal resistance of a twodimensionaludflux channel with non-uniform convection coefficient in the heat sink plane isudstudied. The non-uniform convection is modeled by using two functions than can simulateuda wide variety of different heat sink configurations. In chapter five, a non-symmetrical fluxudchannel with different heat transfer coefficient along the right and left edges and sink planeudis analytically modeled. Due to the edge cooling and non-symmetry, the eigenvalues ofudthe system are defined using the heat transfer coefficient on both edges and for satisfyingudthe orthogonality condition, a normalized function is calculated. In chapter six, thermaludbehavior of two-dimensional rectangular flux channel with arbitrary boundary conditionsudon the source plane is presented. The boundary condition along the source plane can beuda combination of the first kind boundary condition (Dirichlet or prescribed temperature)udand the second kind boundary condition (Neumann or prescribed heat flux). The proposedudsolution can be used for modeling the flux channels with numerous different source planeudboundary conditions without any limitations in the number and position of heat sources. Inudchapter seven, temperature profile of a circular flux tube with discretely specified boundaryudconditions along the source plane is presented. Also, the effect of orthotropic properties areuddiscussed. In chapter 8, a three-dimensional rectangular flux channel with a non-uniformudheat convection along the heat sink plane is analytically modeled. In chapter nine, a summaryudof the achievements is presented and some systems are proposed for the future studies.udIt is worth mentioning that all the models and case studies in the thesis are compared withudthe Finite Element Method (FEM).
机译:电子设备的热分析是设计现代设备的最重要步骤之一。精确的热分析对于设计现代电子设备(例如电池,LED,微电子, udIC,电路板,半导体和散热器)的有效热/管理系统至关重要。为了进行精确的热分析,应通过考虑几何形状,特性和边界条件来计算设备的温度分布和热扩散阻力。当热量通过表面的一部分进入并通过传导流动时,会发生热扩散阻力。当热量从微小的热源流向薄而宽的散热器时,它是热阻的主要来源。本文研究了用于模拟微电子器件中一些常见几何形状的温度行为和热阻的解析模型,例如热通道和热管。考虑系统的不同边界 udcondition。沿着源平面,研究了 ucredly特定的热通量,特定的温度和绝热条件。 ud在系统的整个壁上,都假定了绝热或对流冷却边界条件。沿着水槽平面,考虑具有恒定或可变传热 udco系数的对流冷却。此外,还讨论了正交各向异性特性的影响。本论文共九章。第一章是绪论,除了工作的原创性和重要性以外,还介绍了超热扩散阻力的概念。第二章回顾了过去五十年来有关热扩散阻力的文献,重点是最近的进展。在第三章和第四章中,研究了在散热器平面内具有不均匀对流系数的二维渗流通道的热阻。非均匀对流通过使用两个函数建模,可以模拟多种不同的散热器配置。在第五章中,对沿左右边缘和水槽平面具有不同传热系数的非对称通量 udchannel dis进行了解析建模。由于边缘冷却和非对称性,使用两个边缘上的传热系数定义系统的特征值,并且为了满足正交性条件,计算归一化函数。第六章给出了具有任意边界条件的二维矩形通量通道在源平面上的热行为。沿源平面的边界条件可以是第一类边界条件(Dirichlet或规定的温度) ud和第二类边界条件(Neumann或规定的热通量)的组合。提出的 udsolution可以用于对具有多种不同源平面 udbounded条件的通量通道进行建模,而对热源的数量和位置没有任何限制。在第七章中,给出了沿源平面具有离散指定边界 udconditions的圆形通量管的温度曲线。此外,还讨论了正交各向异性特性的影响。在第8章中,对沿散热器平面具有不均匀过热对流的三维矩形通量通道进行了建模。在第九章中,对研究成果进行了总结,并提出了一些系统,以供将来研究。值得一提的是,本文中的所有模型和案例研究均与有限元方法进行了比较。

著录项

  • 作者

    Razavi S. Masood;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号