首页> 外文OA文献 >Orientation-independent empirical mode decomposition for images based on unconstrained optimization
【2h】

Orientation-independent empirical mode decomposition for images based on unconstrained optimization

机译:基于无约束优化的图像方向无关经验模态分解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper introduces a 2D extension of the empirical mode decomposition (EMD), through a novel approach based on unconstrained optimization. EMD is a fully data-driven method that locally separates, in a completely data-driven and unsupervised manner, signals into fast and slow oscillations. The present proposal implements the method in a very simple and fast way, and it is compared with the state-of-the-art methods evidencing the advantages of being computationally efficient, orientation-independent, and leads to better performances for the decomposition of amplitude modulated-frequency modulated (AM-FM) images. The resulting genuine 2D method is successfully tested on artificial AM-FM images and its capabilities are illustrated on a biomedical example. The proposed framework leaves room for an nD extension (n 2 ).
机译:本文通过一种基于无约束优化的新方法,介绍了经验模式分解(EMD)的二维扩展。 EMD是一种完全由数据驱动的方法,它以完全由数据驱动且不受监督的方式在本地将信号分为快速和慢速振荡。本提案以非常简单和快速的方式实现了该方法,并将其与最新方法进行了比较,该方法证明了计算效率高,与方向无关的优点,并带来了更好的幅度分解性能。调频调制(AM-FM)图像。由此产生的真正2D方法已在人造AM-FM图像上成功测试,其功能在生物医学示例中得到了说明。拟议的框架为nD扩展留出了空间(n> 2)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号