首页> 外文OA文献 >Unsupervised Segmentation Method of Multicomponent Images Based on Fuzzy Connectivity Analysis in the Multidimensional Histograms
【2h】

Unsupervised Segmentation Method of Multicomponent Images Based on Fuzzy Connectivity Analysis in the Multidimensional Histograms

机译:基于模糊连通性分析的多维直方图多组分图像无监督分割方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Image segmentation denotes a process for partitioning an image into distinct regions, it plays an important role in interpretation and decision making. A large variety of segmentation methods has been developed; among them, multidimensional histogram methods have been investigated but their implementation stays difficult due to the big size of histograms. We present an original method for segmenting n-D (where n is the number of components in image) images or multidimensional images in an unsupervised way using a fuzzy neighbourhood model. It is based on the hierarchical analysis of full n-D compact histograms integrating a fuzzy connected components labelling algorithm that we have realized in this work. Each peak of the histogram constitutes a class kernel, as soon as it encloses a number of pixels greater than or equal to a secondaryarbitrary threshold knowing that a first threshold was set to define the degree of binary fuzzy similarity between pixels. The use of a lossless compact n-D histogram allows a drastic reduction of the memory space necessary for coding it. As a consequence, the segmentation can be achieved without reducing the colors population of images in the classification step. It is shown that using n-D compact histograms, instead of 1-D and 2-D ones, leads to better segmentation results. Various images were segmented; the evaluation of the quality of segmentation in supervised and unsupervised of segmentation method proposed compare to the classification method k-means gives better results. It thus highlights the relevance of our approach, which can be used for solving many problems of segmentation.
机译:图像分割是将图像划分为不同区域的过程,它在解释和决策中起着重要作用。已经开发出各种各样的分割方法。其中,虽然已经研究了多维直方图方法,但是由于直方图的大小较大,其实现仍然很困难。我们提出了一种使用模糊邻域模型以无监督的方式分割n-D(其中n是图像中的分量数)图像或多维图像的原始方法。它基于完整n-D紧凑直方图的层次分析,并结合了我们在这项工作中实现的模糊连接的组件标记算法。直方图的每个峰值只要知道第一个阈值已设置为定义像素之间的二进制模糊相似度,就围封了大于或等于次级任意阈值的像素,便构成了一个类内核。使用无损紧凑型n-D直方图可大大减少对其进行编码所需的存储空间。结果,可以在不减少分类步骤中图像的色彩填充的情况下实现分割。结果表明,使用n-D紧凑直方图代替1-D和2-D直方图可以得到更好的分割结果。各种图像被分割;提出的有监督和无监督分割方法中的分割质量评估与分类方法k均值相比具有更好的效果。因此,它突出了我们方法的相关性,可用于解决细分问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号