首页> 外文OA文献 >Localization of transient signal high-values in laser Doppler flowmetry signals with an empirical mode decomposition
【2h】

Localization of transient signal high-values in laser Doppler flowmetry signals with an empirical mode decomposition

机译:用经验模态分解对激光多普勒血流测量信号中瞬态信号高值的定位

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The laser Doppler flowmetry (LDF) technique provides the monitoring of microvascular blood flow perfusion. However, LDF monitors based on fiber-optic transducers have the serious drawback of generating TRAnsient Signal High-values (TRASH) in signals. These TRASH correspond to artifacts for clinicians as they prevent interpretations of the signal when they are numerous. Moreover, TRASH exclude the possibility of direct signal processing and analyses. Therefore, in clinical routines, a human visual inspection of LDF signals is necessary to detect TRASH and to process the signals accordingly. This may be very time consuming. An algorithm able to localize TRASH automatically for their removal is therefore of interest. However, the development of such an algorithm is not an easy task as TRASH amplitude can be lower, higher, or in the same amplitude range as responses to stimuli such as post-occlusive hyperemia. The recently introduced empirical mode decomposition (EMD) has the advantage of splitting any kind of signal into fast and slow oscillations. Relying on these properties, the authors evaluate the possibility for EMD to localize TRASH automatically. For this purpose, LDF signals from 28 men of different ages are recorded at rest, during a vascular occlusion of 3 min , followed by a post-occlusive hyperemia. For each signal containing TRASH, the first intrinsic mode function obtained with the EMD is processed with a running window-based analysis in which a thresholding of the local maxima is carried out for the localization of TRASH. From the data, the use of a window width of 25 s is suggested. The results show effective and potential usefulness of this algorithm for an automatic localization of TRASH. Moreover, the method proposed has the advantage of being insensitive to the rapid increases of blood flow induced by post-occlusive hyperemia, which is of interest for clinicians. Because it is both local and fully data adaptive, EMD appears as an appealing processing technique for overcoming some of the limitations of the LDF.
机译:激光多普勒血流仪(LDF)技术可监测微血管血流灌注。但是,基于光纤换能器的LDF监视器具有在信号中生成TRAnsient信号高值(TRASH)的严重缺陷。这些TRASH对应于临床医生的假象,因为当它们数量众多时,它们会阻止信号的解释。此外,TRASH排除了直接信号处理和分析的可能性。因此,在临床程序中,必须对LDF信号进行人工视觉检查,以检测TRASH并相应地处理信号。这可能非常耗时。因此,对于能够自动定位TRASH以便将其删除的算法感兴趣。但是,开发这种算法并不是一件容易的事,因为TRASH振幅可以更低,更高或与对诸如阻塞后充血的刺激反应相同的振幅范围内。最近引入的经验模式分解(EMD)具有将任何类型的信号分为快速和慢速振荡的优点。依靠这些特性,作者评估了EMD自动定位TRASH的可能性。为此,在静息,血管闭塞3分钟,闭塞后充血期间记录来自28个不同年龄男性的LDF信号。对于每个包含TRASH的信号,将使用基于运行窗口的分析处理EMD获得的第一本征模式函数,其中对TRASH的定位进行局部最大值的阈值化。根据数据,建议使用25 s的窗口宽度。结果表明,该算法对于TRASH的自动定位具有有效和潜在的实用性。而且,所提出的方法的优点是对由闭塞后充血引起的血流的快速增加不敏感,这是临床医生感兴趣的。由于EMD既可以本地自适应又可以完全数据自适应,因此它是克服LDF某些局限性的一种有吸引力的处理技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号