首页> 外文OA文献 >Exploiting the potential of 2-((5-(4-(diphenylamino)phenyl)thiophen-2-yl)methylene)malononitrile as an efficient donor molecule in vacuum-processed bulk-heterojunction organic solar cells
【2h】

Exploiting the potential of 2-((5-(4-(diphenylamino)phenyl)thiophen-2-yl)methylene)malononitrile as an efficient donor molecule in vacuum-processed bulk-heterojunction organic solar cells

机译:利用2 - ((5-(4-(二苯基氨基)苯基)噻吩-2-基)亚甲基)丙二腈作为真空处理的本体异质结有机太阳能电池中的有效供体分子的潜力

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A comprehensive experimental study is reported on the optical and electrical characteristics of 2-((5-(4-(diphenylamino)phenyl)thiophen-2-yl)methylene)malononitrile (DPTMM) when used as molecular donor in an organic solar cell (OSC) device structure. A major property of this new donor-type material is an unusually deep highest-occupied molecular orbital (HOMO) level that leads to a high open-circuit voltage (Voc). A reasonably high hole-mobility was also observed in a hole-injection diode configuration. These are both promising factors for high-performance OSCs. In order to fully explore the potential of DPTMM in bulk-heterojunction-based OSCs, a step-wise experimental strategy was applied to optimize film composition and cell architecture. By co-evaporating the DPTMM with C60 to promote exciton dissociation by maximizing the heterojunction area power conversion efficiency (PCE) of 3.0% was achieved. Finally, inserting a buffer layer and a spatial gradient of the donor/acceptor ratio was found to provide better conduction paths for charge carriers. The maximum obtained PCE was 4.0%, which compares favorably with the state-of-the-art of high-performance OSCs. All optimized devices show quite unusual high Voc values up to 1 V.
机译:关于在有机太阳能电池中用作分子供体的2-((5-(4-(二苯基氨基)苯基)噻吩-2-基)亚甲基)丙二腈(DPTMM)的光学和电气特性的综合实验研究进行了报道( OSC)设备结构。这种新的供体型材料的主要特性是异常高的最高占据分子轨道(HOMO)能级,会导致高开路电压(Voc)。在空穴注入二极管结构中也观察到相当高的空穴迁移率。这些都是高性能OSC的有希望的因素。为了充分探索DPTMM在基于体异质结的OSC中的潜力,采用了分步实验策略来优化膜的成分和细胞结构。通过使DPTMM与C60共同蒸发以通过使异质结区域的功率转换效率(PCE)最大化为3.0%来促进激子离解,可以实现。最后,发现插入缓冲层和施主/受主比率的空间梯度可为电荷载流子提供更好的传导路径。获得的最大PCE为4.0%,与高性能OSC的最新水平相比是有利的。所有优化的设备都显示出高达1 V的异常高Voc值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号