首页> 外文OA文献 >Bistable Organic Memory Device with Gold Nanoparticles Embedded in a Conducting Poly(N-vinylcarbazole) Colloids Hybrid
【2h】

Bistable Organic Memory Device with Gold Nanoparticles Embedded in a Conducting Poly(N-vinylcarbazole) Colloids Hybrid

机译:具有金纳米粒子的双稳态有机记忆装置嵌入导电聚(N-乙烯基咔唑)胶体混合物中

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We report on the nonvolatile memory characteristics of a bistable organic memory (BOM) device with Au nanopartides (NPs) embedded in a conducting poly(N-vinylcarbazole) (PVK) colloids hybrid layer deposited on flexible poly(ethylenete-rephthalate) (PET) substrates. Transmission electron microscopy (TEM) images show the Au nanoparticles distributed isotropically around the surface of a PVK colloid. The average induced charge on Au nanoparticles, estimated using the C-V hysteresis curve, was large, as much as 5 holes/NP at a sweeping voltage of +/-3 V. The maximum ON/OFF ratio of the current bistability in the BOM devices was as large as 1 x 10(5). The cycling endurance tests of the ON/OFF switching exhibited a high endurance of above 1.5 x 10(5) cycles, and a high ON/OFF ratio of similar to 10(5) could be achieved consistently even after quite a long retention time of more than 1 x 10(6) s. To clarify the memory mechanism of the hole-mediated bistable organic memory device, the interactions between Au nanoparticles and poly(N-vinylcarbazole) colloids was studied by estimating the density of states and projected density of state calculations using density functional theory. Au atom interactions with a PVK unit decreased the band gap by 2.96 eV with the new induced gap states at 5.11 eV (HOMO, E(0)) and LUMO 4.30 eV and relaxed the HOMO level by 0.5 eV (E(1)). E(1) at similar to 6.2 eV is very close to the pristine HOMO, and thus the trapped hole in E(1) could move to the HOMO of pristine PVK From the experimental data and theoretical calculation, it was revealed that a low-conductivity state resulted from a hole trapping at E(o) and E(1) states and subsequent hole transportation through Fowler-Nordheim tunneling from E(1) state to Au NPs and/or interface trap states leads to a high conductivity state.
机译:我们报告了双稳态有机存储(BOM)器件的非易失性存储特性,其中金纳米粒子(NPs)嵌入导电的聚(N-乙烯基咔唑)(PVK)胶体混合层中,沉积在柔性聚(对苯二甲酸乙二酯)(PET)上基材。透射电子显微镜(TEM)图像显示Au纳米粒子在PVK胶体表面周围各向同性分布。使用CV磁滞曲线估算的Au纳米颗粒上的平均感应电荷很大,在+/- 3 V的扫描电压下高达5个孔/ NP。BOM器件中电流双稳态的最大ON / OFF比高达1 x 10(5)。 ON / OFF开关的循环耐力测试显示出1.5 x 10(5)个循环以上的高耐力,即使经过很长的保持时间,也可以始终达到类似于10(5)的高ON / OFF比。大于1 x 10(6)s。为了阐明空穴介导的双稳态有机存储器件的存储机理,通过估计态密度和使用密度泛函理论计算态的预计密度,研究了金纳米颗粒与聚(N-乙烯基咔唑)胶体之间的相互作用。 Au原子与PVK单元的相互作用将带隙降低了2.96 eV,在5.11 eV(HOMO,E(0))和LUMO 4.30 eV处产生了新的带隙状态,使HOMO能级降低了0.5 eV(E(1))。与6.2 eV相似的E(1)非常接近原始HOMO,因此E(1)中的陷获孔可能移至原始PVK的HOMO。从实验数据和理论计算可知,电导率状态是由空穴在E(o)和E(1)处俘获以及随后通过Fowler-Nordheim隧穿从E(1)态到Au NPs和/或界面陷阱态导致的空穴迁移导致的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号