首页> 外文OA文献 >Computational modeling analysis of mitochondrial superoxide production under varying substrate conditions and upon inhibition of different segments of the electron transport chain.
【2h】

Computational modeling analysis of mitochondrial superoxide production under varying substrate conditions and upon inhibition of different segments of the electron transport chain.

机译:在不同底物条件下和抑制电子传递链的不同区段时线粒体超氧化物产生的计算模型分析。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A computational mechanistic model of superoxide (O2•-) formation in the mitochondrial electron transport chain (ETC) was developed to facilitate the quantitative analysis of factors controlling mitochondrial O2•- production and assist in the interpretation of experimental studies. The model takes into account all individual electron transfer reactions in Complexes I and III. The model accounts for multiple, often seemingly contradictory observations on the effects of ΔΨ and ΔpH, and for the effects of multiple substrate and inhibitor conditions, including differential effects of Complex III inhibitors antimycin A, myxothiazol and stigmatellin. Simulation results confirm that, in addition to O2•- formation in Complex III and at the flavin site of Complex I, the quinone binding site of Complex I is an additional superoxide generating site that accounts for experimental observations on O2•- production during reverse electron transfer. However, our simulation results predict that, when cytochrome c oxidase is inhibited during oxidation of succinate, ROS production at this site is eliminated and almost all superoxide in Complex I is generated by reduced FMN, even when the redox pressure for reverse electron transfer from succinate is strong. In addition, the model indicates that conflicting literature data on the kinetics of electron transfer in Complex III involving the iron-sulfur protein-cytochrome bL complex can be resolved in favor of a dissociation of the protein only after electron transfer to cytochrome bH. The model predictions can be helpful in understanding factors driving mitochondrial superoxide formation in intact cells and tissues.
机译:建立了线粒体电子传输链(ETC)中超氧化物(O2•-)形成的计算机理模型,以方便定量分析控制线粒体O2•-产生的因素,并有助于实验研究的解释。该模型考虑了配合物I和III中的所有单个电子转移反应。该模型解释了对ΔΨ和ΔpH的影响,以及多种底物和抑制剂条件的影响(包括复合物III抑制剂抗霉菌素A,霉菌唑和柱头菌素的不同作用)的多次观察结果,这些观察结果通常相互矛盾。模拟结果证实,除了在配合物III中以及在配合物I的黄素位点形成O2•-之外,配合物I的醌结合位点是一个额外的超氧化物生成位点,可以解释在反向电子过程中产生O2•-的实验观察结果。传递。然而,我们的模拟结果预测,当琥珀酸氧化过程中细胞色素C氧化酶被抑制时,该位点的ROS产生被消除,复合物I中几乎所有超氧化物都通过还原FMN生成,即使从琥珀酸逆向电子转移的氧化还原压力也是如此。很强。此外,该模型表明,只有在电子转移至细胞色素bH后,才能解决复杂的涉及铁-硫蛋白-细胞色素bL复合物的电子转移动力学的文献资料,而有利于蛋白质的解离。该模型预测可以有助于理解驱动完整细胞和组织中线粒体超氧化物形成的因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号