首页> 外文OA文献 >Improving short term load forecasting using double seasol arima model
【2h】

Improving short term load forecasting using double seasol arima model

机译:使用双重Seasol Arima模型改进短期负荷预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Forecasting load demand with high accuracy is required to avoid energy wasting and prevent system failure. The aim of this paper is to develop a forecasting model based on double SARIMA for improving the accuracy of short term load prediction in Malaysia and compare the results with single SARIMA model. A half hourly load demand of Malaysia for 4 months, from September 01, 2005 to December 31, 2005 is used in this study with the mean absolute percentage error (MAPE) as one of the accuracy measures. The results of the identification step show that the load data have two seasonal periods, i.e. daily and weekly seasonality with length 48 and 336 respectively. The estimation and diagnostic check steps show that the best order of double SARIMA for half hourly load demand of Malaysia is ARIMA([2,3,4,8,11,16,18,19,20,21,28,29,30,32,40,41,45,46,47],1,1)(0,1,1)48(0,1,1)336 with in-sample and out-sample MAPE values of 0.96840 and 4.49251 respectively. The in-sample and out-sample MAPE of a single SARIMA model are 1.07872 and 10.45530 respectively. Thus, the current study shows that the double SARIMA model performs better than single SARIMA model since the MAPE of in-sample and out-sample are reduced by 10.22676% and 57.03126% respectively.
机译:需要高精度地预测负载需求,以避免能源浪费和防止系统故障。本文的目的是开发一种基于双重SARIMA的预测模型,以提高马来西亚短期负荷预测的准确性,并将结果与​​单个SARIMA模型进行比较。从2005年9月1日至2005年12月31日,马来西亚使用了四个月的半小时负载需求,该平均负载百分比误差(MAPE)是准确性的一种度量方法。识别步骤的结果表明,负荷数据具有两个季节周期,即长度分别为48和336的每日和每周季节。估计和诊断检查步骤表明,对于马来西亚半小时负载需求,双SARIMA的最佳顺序是ARIMA([2,3,4,8,11,16,18,19,20,21,28,29,30 ,32,40,41,45,46,47],1,1)(0,1,1)48(0,1,1)336的样本内和样本外MAPE值分别为0.96840和4.49251。单个SARIMA模型的样本内和样本外MAPE分别为1.07872和10.45530。因此,当前的研究表明,双重SARIMA模型的性能优于单一SARIMA模型,因为样本内和样本外的MAPE分别降低了10.22676%和57.03126%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号