首页> 外文OA文献 >Techniques to develop forecasting model on low cost housing in urban area
【2h】

Techniques to develop forecasting model on low cost housing in urban area

机译:建立城市廉租住房预测模型的技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The number of people who will live in urban areas is expected to double to more than five billion between 1990 to 2025. Therefore, accurate predictions of the level of aggregate demand for housing are very important. Various forecasting techniques have been developed using probabilistic, statistics, simulation or artificial intelligent. Hence, there is a need to identify different techniques, in terms of accuracy, in the prediction of needs for facilities. This paper discusses the Artificial Neural Networks (ANN) technique and compaes it with other techniques in forecasting needs of housing in urban area. Investigation on previous research and literature materials will be derived and compared in terms of errors in the accuracy of the technique. The findings of this study indicates that the ANN model performs best overall
机译:从1990年到2025年,预计城市地区的人口数量将翻一番,达到50亿以上。因此,准确预测住房的总需求水平非常重要。已经使用概率,统计,模拟或人工智能开发了各种预测技术。因此,在准确度方面,需要在预测设施需求时确定不同的技术。本文讨论了人工神经网络(ANN)技术,并将其与其他技术相结合来预测城市房屋的需求。将对先前研究和文献资料进行调查,并根据技术准确性的误差进行比较。这项研究的结果表明,人工神经网络模型在整体上表现最佳

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号