首页> 外文OA文献 >Three dimensional information estimation and tracking for moving objects detection using two cameras framework
【2h】

Three dimensional information estimation and tracking for moving objects detection using two cameras framework

机译:使用两个摄像头框架进行运动物体检测的三维信息估计和跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Calibration, matching and tracking are major concerns to obtain 3D information consisting of depth, direction and velocity. In finding depth, camera parameters and matched points are two necessary inputs. Depth, direction and matched points can be achieved accurately if cameras are well calibrated using manual traditional calibration. However, most of the manual traditional calibration methods are inconvenient to use because markers or real size of an object in the real world must be provided or known. Self-calibration can solve the traditional calibration limitation, but not on depth and matched points. Other approaches attempted to match corresponding object using 2D visual information without calibration, but they suffer low matching accuracy under huge perspective distortion. This research focuses on achieving 3D information using self-calibrated tracking system. In this system, matching and tracking are done under self-calibrated condition. There are three contributions introduced in this research to achieve the objectives. Firstly, orientation correction is introduced to obtain better relationship matrices for matching purpose during tracking. Secondly, after having relationship matrices another post-processing method, which is status based matching, is introduced for improving object matching result. This proposed matching algorithm is able to achieve almost 90% of matching rate. Depth is estimated after the status based matching. Thirdly, tracking is done based on x-y coordinates and the estimated depth under self-calibrated condition. Results show that the proposed self-calibrated tracking system successfully differentiates the location of objects even under occlusion in the field of view, and is able to determine the direction and the velocity of multiple moving objects.
机译:校准,匹配和跟踪是获取3D信息(包括深度,方向和速度)的主要问题。在寻找深度时,相机参数和匹配点是两个必要的输入。如果使用手动传统校准对相机进行了很好的校准,则可以准确地获得深度,方向和匹配点。然而,大多数手动传统校准方法使用起来不方便,因为必须提供或知道现实世界中物体的标记或真实尺寸。自校准可以解决传统的校准限制,但不能解决深度和匹配点的问题。其他方法尝试在不进行校准的情况下使用2D视觉信息来匹配相应的对象,但是它们在巨大的透视失真下遭受了较低的匹配精度。这项研究的重点是使用自校准跟踪系统获得3D信息。在该系统中,匹配和跟踪是在自校准条件下完成的。为实现目标,本研究引入了三项贡献。首先,引入方向校正以获得更好的关系矩阵,以在跟踪过程中进行匹配。其次,在具有关系矩阵之后,引入了另一种基于状态的匹配的后处理方法,以改善对象匹配的结果。提出的匹配算法能够达到近90%的匹配率。在基于状态的匹配之后估计深度。第三,在自校准条件下,基于x-y坐标和估计的深度进行跟踪。结果表明,所提出的自校准跟踪系统即使在遮挡下也能成功地区分物体的位置,并且能够确定多个运动物体的方向和速度。

著录项

  • 作者

    Goh Kam Meng;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号